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Abstract. In smart-cities, computer vision has the potential to dramat-
ically improve the quality of life of people suffering of visual impairments.
In this field, we have been working on a wearable mobility aid aimed at
detecting in real-time obstacles in front of a visually impaired. Our app-
roach relies on a custom RGBD camera, with FPGA on-board processing,
worn as traditional eyeglasses and effective point-cloud processing imple-
mented on a compact and lightweight embedded computer. This latter
device also provides feedback to the user by means of an haptic interface
as well as audio messages. In this paper we address crosswalk recogni-
tion that, as pointed out by several visually impaired users involved in
the evaluation of our system, is a crucial requirement in the design of
an effective mobility aid. Specifically, we propose a reliable methodology
to detect and categorize crosswalks by leveraging on point-cloud pro-
cessing and deep-learning techniques. The experimental results reported,
on 10000+ frames, confirm that the proposed approach is invariant to
head/camera pose and extremely effective even when dealing with large
occlusions typically found in urban environments.
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1 Introduction and Related Work

Autonomous mobility, especially in urban environments, can be a challenging
task for people suffering of visual impairments. Although some stationary obsta-
cles can be learned day by day, many others change dynamically and thus can’t
be learned. For this reason, several mobility devices aimed at detecting obstacles,
possibly by means of a contact-less strategy, have been proposed. Nevertheless,
despite this fact, this strategy is not adopted by the white cane, the most widely
adopted mobility aid by visually impaired users. Moreover, the white cane does
not allow to perceive other crucial features such as pedestrian crossings.

Many vision-based systems have been proposed to deal with crosswalk recog-
nition, or more in general urban road markings recognition, for different pur-
poses. Most devices were proposed for vehicles, as assistive device as well as as
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part of autonomous driving systems, such as [1] that detects crosswalks by apply-
ing several filters on 2D images and [2] that relies on a bird-view re-projection
of the 2D image. Some methods exploit 3D data [3,4] while others also rely on
non-vision techniques; for example, Suzuki et al. [5] use 2D image processing and
radar technology. In this field, an interesting study, aimed at analyzing drivers
behavior in presence of different urban road markings, has been proposed in [6].

Other approaches have been designed to aid the visually impaired. In [7],
an effective methodology was proposed to detect crosswalks, estimating their
extension, and traffic lights, detecting the emitted color. Some of them, such
as [8] and [9], have been implemented on a smartphone. Radvanyi et al. [10]
proposed a wearable device based on a neural network to detect ground plane
in 2D images and then recognizing crosswalks. In [11], the 3D data obtained
through a stereo vision system is processed applying the Hough transform in the
2D and 3D domain to detect crosswalks and stairs. Crosswatch system [12] allows
self localization by recognizing specific street patterns. In this paper we propose
an effective methodology to detect crosswalks by leveraging 3D data provided
by a custom RGBD camera and a Convolutional Neural Network (CNN).

2 Overview of the Wearable Mobility Aid

In this section we provide a brief overview of our wearable mobility aid for
obstacle detection, proposed in its early development phase in [13].

It consists of a custom RGBD sensor developed by our research group [14],
based on stereo vision technology, and an embedded ARM board. Our system is
purely based on vision technology and is powered by a small accumulator that
enables hours of battery life. The 3D sensor provides dense and accurate depth
map processing synchronized stereo images at more than 30 fps (up to 640 ×
480 resolution) according to state-of-the-art 3D vision algorithms implemented
into a low cost FPGA (Spartan 6 model 75 in the current setup). Specifically,
we have mapped into the FPGA a complete stereo vision pipeline including
a custom and modified version of the SGM algorithm [15]. The output of the
RGBD sensor (reference rectified image and disparity map as shown in Figure1 a)
and b)) is sent, via USB at about 20 fps, to the embedded computer, Odroid
U3 [16], for obstacle detection. The early stage of the visual processing pipeline,
greatly improved wrt the implementation shown in [13] consists of the follow-
ing steps: disparity map to point-cloud conversion, ground plane segmentation
according to a robust RANSAC [17] framework applied to the point-cloud, head
pose estimation wrt the ground plane and refinement based on Kalman filter-
ing. Once obtained the ground plane equation and the head pose we re-project,
from a top-view perspective, points not laying on the ground plane and in this
domain we compute, within vertical bins (of size 2 × 2 cm in the current setup),
statistics concerned with heights (e.g., min and max values) and occupancy to
accurately detect potential obstacles. According to suggestions provided by visu-
ally impaired users involved in the testing phase, the original field of view of the
camera is restricted to the three nearby VOIs shown in Figure 1 c). Tactile and
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Fig. 1. On top, the adopted wearable mobility aid. It consists of a custom RGBD
sensor, an Odroid U3 system, a haptic glove, a battery (enabling 3+ hours autonomy)
and optional audio interfaces (purple). On bottom, overview of the obstacle detection
approach deployed on it. a) Reference rectified image - b) Disparity map computed
on FPGA (colder colors encode farther points) - c) Top-view re-projection with three
sensed volumes of interest (VOI) in front of the user and, highlighted, the obstacles -
d) Segmented ground plane (green) with superimposed head pose wrt the ground plane
and detected obstacle regions (red).

audio feedback are provided by means of a vibro-tactile glove, bone conduc-
tive headset and smartphone. The whole hardware setup described so far and
depicted in Figure 1 weights about 250 g, including the battery.

3 Proposed Crosswalk Recognition Approach

In this paper we propose a crucial enhancement to the outlined mobility aid
providing reliable crosswalk recognition. This additional feature, not available
with a white cane, would greatly improve the knowledge of the explored envi-
ronment enabling the visually impaired to properly locate the presence and the
direction of pedestrian crossings as well as to improve his/her self localization. To
detect crosswalk and recognize their orientation, according to the four categories
depicted at the left of Figure 2, wrt the user we rely on point-cloud processing
and a CNN. In particular, two main phases are carried out:

– Head pose estimation, aimed at warping the ground plane according to the
estimated head position computed from point-cloud data provided by the
RGBD sensor

– Detection of pedestrian crossings and categorization of their orientation with
respect to the user on the segmented and warped ground plane images
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Fig. 2. Proposed ontology. The CNN is trained to detect and classify pedestrian cross-
ings according to four possible orientation wrt the user’s point of view: vertical (V),
horizontal (H), diagonal left (L) and diagonal right (R). A further class, referred to as
other (O), takes into account any other case.

3.1 Head Pose Estimation and Image Refinement

Our system, starting from the dense disparity map provided by the RGBD sen-
sor, computes on the embedded CPU the point-cloud according to (1) mapping
each point with a valid disparity value to the corresponding 3D point of coor-
dinates (Xc, Yc, Zc) wrt the camera reference system by knowing the baseline
of the stereo camera b, the focal length f , the optical center (u0, v0) and the
coordinate (u, v) of the point at disparity d.

Zc =
bf

d
Xc =

Zc(u− u0)
f

Yc =
Zc(v − v0)

f
(1)

From the point-cloud, a robust RANSAC framework [17] allows us to obtain
a reliable estimation of the ground plane equation. This information enables to
discriminate between ground plane (where crosswalk markers are painted) and
any other object not laying on this surface. Then, the segmented ground plane
image/point-cloud is further processed before getting analyzed by the CNN,
which could wrongly estimate the direction taken by the crosswalk in presence of
head/camera tilting. In particular, we found that recognition accuracy improves
when the head/camera is aligned to the floor (i.e., when the normal vector of
the ground plane, if drawn on the image, appears to be vertical). To follow
this strategy, the angle that aligns the ground plane normal with the vertical
direction is computed and used to warp the segmented image accordingly. Once
obtained such normalized representation of the ground plane from point-cloud
data, the warped image can be processed by the CNN to detect and classify
potential pedestrian crossings.

3.2 CNN Architecture for Crosswalk Recognition

Machine learning techniques have been widely adopted in many practical appli-
cations and deep-learning is one of the most effective techniques for visual recog-
nition. A deep neural network is a multilayer architecture with layers connected
by non-linear transformations. In computer vision, CNNs are deep neural net-
works made of several layers, called convolutional layers, that extract features
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Fig. 3. Architecture of the CNN based on two convolutional layers showing their
modules.

from the images by applying several normalization and filtering operations, and
a final classifier, typically, a Multi Layer Perceptron (MLP). Compared to other
machine learning techniques, such as Bag of Visual Words [18], that rely on an
explicit feature extraction phase, a CNN allows for a higher level of abstraction
deploying adaptive convolutional layers. LeCun et al. [19] reported how such
multistage architectures yield to significant improvements compared to a single
layer architecture.

In our approach the CNN takes as input the warped image of the ground
plane, detects the presence of a crosswalk and, if found, its orientation. The
user is made aware of the outcome of this process with an audio message. In
our architecture, we adopt a 2-layers plus MLP structure, as shown in Figure 3,
mapped within the Torch 7 framework [20]. Specifically, the two convolutional
layers and the MLP have been designed as follows:

– Layer 1: Filter performs spatial convolution to extracts 256 10×10 feature
maps by using 5×5 filters and fan-in equal to 1, Non-Linear applies hyper-
bolic tangent as squashing function (enhancing strong features and suppress-
ing weak ones), Pooling, on 2×2 regions and 2×2 stride, obtaining 16 14×14
maps, Normalize performs feature normalization

– Layer 2: Filter performs spatial convolution to extracts 16 28×28 feature
maps by using 5×5 filters and fan-in equal to 4, Non-Linear applies hyper-
bolic tangent as in Layer 1, Pooling, on 2×2 regions and 2×2 stride, obtaining
256 5×5 maps, Normalize performs feature normalization

– MLP : made by a 128 neurons level fully connected to a 5 neurons further
level, adopting hyperbolic tangent for back propagation

4 Experimental Results

For the experimental validation we trained the CNN on a dataset composed of
about 2500 images acquired with our wearable mobility aid in urban scenarios.
For each of the 5 classes depicted in Figure 2 we have acquired about 500 training
instances. After a 15 epochs training period the test set composed of 100 images
per class has been subject of categorization returning a 100% correctness ratio.
Eventually, to properly evaluate the effectiveness of the proposed approach in
challenging urban environments including scenes with large and multiple occlu-
sions, difficult illumination conditions, ruined crosswalk patterns and so on, we
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Table 1. Confusion matrices computed on the validation set (10165 frames). On the
left, by processing the raw segmented images, we obtain 0 false negatives (i.e., unde-
tected crosswalks) and 741 false positives (5.97%). On the right, by processing the
segmented images after head pose refinement, we obtain 0 false negatives and 995 false
positives (6.63%).

1983 162 96 0 0 V, 88.48%
58 814 0 19 0 R, 91.35%
45 0 874 14 0 L, 93.67%
0 4 3 97 0 H, 93.27%
60 58 78 411 5369 O, 89.84%

2198 19 24 0 0 V, 98.08%
28 859 0 4 0 R, 96.40%
25 0 903 5 0 L, 96.78%
0 0 3 101 0 H, 97.12%
95 65 91 423 5302 O, 88.72%

acquired a validation dataset composed of 10000+ frames. In Table 1 we report
confusion matrices summarizing the results on such dataset. A confusion matrix
has N rows and N columns, with N the number of classes in the ontology, and
highlights the following:

– The main diagonal contains the number of correct instances for each class
– On each row, the accuracy percentage is reported for a class, showing how

many frames are miss-recognized and the class they are wrongly assigned to
– On each column, it shows how many frames, for each other class, are wrongly

categorized as belonging to a different class

The table, on the left, shows results concerning recognition accuracy obtained
by processing the raw ground plane segmentation image without head pose
refinement. We can notice a high correctness rate for crosswalk recognition, which
is between 88% and 94% for each of the four classes V, R, L, H. Moreover, it is
worth noticing that wrongly categorized crosswalk frames are always assigned to
a different zebra crossing pattern and never miss-categorized as class O. There-
fore, the crosswalk recognition rate is 100%. On the other hand, we can also
notice that we have 10.16% of the frames belonging to class O wrongly classi-
fied, resulting in a false positive percentage (i.e., images wrongly categorized as
crosswalk) of 5.97% on the overall validation set.

Applying the head pose refinement, on the right in Table 1, we obtain an
average recognition accuracy improvement between 3% and 5% on classes R, L
and H, with a major increase close to 10% for V. Figure 4 shows 2 out 10000+
frames of the validation dataset; in particular the first row reports a scenario
where the head pose refinement phase allows to detect the correct class (H). On
the other hand, the number of frames of class O wrongly categorized as crosswalk
slightly increases by less than 1% on the overall dataset.

In general, false positives are mainly due to particular challenging environ-
ments when framing regions containing shadows close to areas exposed to sun-
light. However, it is worth observing that our current training set has a limited
cardinality and an extended dataset, currently under acquisition, would cer-
tainly allow to further reduce the number of false detections. Finally, we report
that on the Odroid U3 our approach computes plane detection plus head pose
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Fig. 4. Two frames from the validation set (10000+ instances). a) the reference rectified
image - b) the raw disparity map computed by the RGBD sensor - c) the detected
ground plane - d) refined/warped ground plane according to the normal vector. c) and
d) also show the recognized orientation, corrected by pose refinement on the first frame.

refinement in about 20 ms and crosswalk recognition in 180 ms thus allowing a
prompt feedback to the user.

5 Conclusions

In this paper, an effective crosswalk recognition pipeline leveraging 3D data pro-
vided by a compact RGBD sensor and deep-learning has been proposed. Despite
the small cardinality of the current training set, experimental results on 10000+
images acquire in challenging urban environments, show a quite high recogni-
tion accuracy even in presence of large occlusions. Moreover, its computational
efficiency makes it suitable for real-time crosswalk recognition even on the tar-
get embedded device deployed for a wearable mobility aid. A larger dataset
would improve the accuracy, with no computational overhead and this approach
could also be extended to detect and recognize other road markings for several
purposes.
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