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Abstract—In this paper we propose an effective and wearable
mobility aid for people suffering of visual impairments purely
based on 3D computer vision and machine learning techniques.
By wearing our device the users can perceive, guided by audio
messages and tactile feedback, crucial information concerned
with the surrounding environment and hence avoid obstacles
along the path. Our proposal can work in synergy with the
white cane and allows for very effective and real-time obstacle
detection on an embedded computer, by processing the point-
cloud provided by a custom RGBD sensor, based on passive stereo
vision. Moreover, our system, leveraging on deep-learning tech-
niques, enables to semantically categorize the detected obstacles
in order to increase the awareness of the explored environment.
It can optionally work in synergy with a smartphone, wirelessly
connected to the the proposed mobility aid, exploiting its audio
capability and standard GPS-based navigation tools such as
Google Maps. The overall system can operate in real-time for
hours using a small battery, making it suitable for everyday life.
Experimental results confirmed that our proposal has excellent
obstacle detection performance and has a promising semantic
categorization capability.

I. INTRODUCTION

Autonomous mobility can be a serious problem for people
suffering of visual impairments and, even when walking on a
well-known route, there are hazards along their path. While
some are stationary and thus their position can be learned,
many others are not (people, cars, etc.) and hence can’t
be predicted beforehand. The white cane enables to detect
nearby obstacles, but it requires physical contact, so it cant’t
detect farther objects. Moreover, it can’t detect floating objects,
such as bars or branches. Trained dogs can help in these
circumstances but, as reported in [1], not without limitations
due to the training cost and the relative short life of a dog.

In recent years, many devices exploiting different technolo-
gies such as GPS, sonar, vision and others described later
have been proposed. However, most of them are cumbersome
and not be suited for everyday activities due to the short
battery life or other specific constraints related to the adopted
technology. On the other hand, the rapid technology progress,
mainly driven by the mobile/embedded market, enables the
deployment of very powerful computing devices characterized
by limited energy requirements. This fact has lead many
researchers, with different degrees of effectiveness, to propose
systems aimed at improving everyday life to people suffering
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Fig. 1. Overview of the proposed mobility aid. The figure highlights main
features such as object detection and categorization, haptic interface and
smartphone/tablet integration for GPS navigation and voice synthesis.

of disabilities. One of the most critical activity is concerned
with autonomous mobility: a navigation device should effec-
tively detect any potential hazard and promptly inform the
user. Moreover, an effective mobility aid should be designed
with a deep understanding of the user’s requirements. In [1]
is reported a detailed study, based on the feedback gathered
from 30 adults, providing useful insights for the design of
mobility aid suited for indoor and outdoor navigation and [2],
[1] pointed out the importance to select a representative set of
users for testing new systems.

Our system relies on the dense and accurate 3D data pro-
vided in real-time by a custom RGBD camera worn on glass
frames for blind users and with a different arrangements for
other kind of visual impairments. Depth data and 2D images
provided by such sensor are processed, by an embedded CPU
board, to accurately detect potential obstacles and to categorize
them by means of deep-learning techniques.The user perceives
the surrounding environment sensed by the 3D camera by
means of an haptic interface and audio messages that summa-
rize the outcome of scene interpretation. The overall system,
depicted in Figure 2, is extremely small and lightweight, about
250 g including a small battery enabling 3 hours of navigation,



making it truly wearable. The evaluation reported in this paper
shows that our proposal has excellent performance in terms
of obstacle detection reliability and promising categorization
capabilities.

II. RELATED WORK

Existing mobility aids can be broadly classified in two, not
mutually exclusive, categories:

o Electronic Travel Support (ETS): systems aimed at en-
abling autonomous navigation typically by means of dy-
namic obstacle detection. They can be Non-vision based,
exploiting ultrasound sensors [3], [4], [5], [6] or laser
scanner coupled with Inertial Measurements Unit (IMU)
[7], GPS signals [8], [9] and/or RFID [10], or Vision
based, relying on stereo [11], [12], [13] or active sensors
like Kinect [14], [15], [16].

o Self Localization Support (SLS): systems aimed at en-
abling self localization according to different technologies
(e.g., "Blindsquare™!).

While factors such as weight/size, battery life and respon-
siveness are crucial for both categories, for ETSs sensing
capability, algorithms for obstacle detection/categorization and
intuitive feedback to the user clearly play a major role. People
suffering of visual impairments often improve their capability
to perceive the surrounding environment through other senses
and in particular relying on touch and hearing as noted in [17]
and [18]. For this reason, most ETS systems provide feedback
according to these two senses by means of haptic interfaces
and/or audio signals.

« Haptic-interface. The sense of touch, frequently not fully
exploited by normally sighted people, is on the other hand
essential for the visually impaired and for this reason it
has been widely adopted in ETSs [3], [19], [14], [13],
(201, [15], [16], [21], [22], [12], [S], [11], [4].

o Audio. The sense of hearing is also crucial for people
suffering of visual disabilities and for this reason it has
been exploited following two main approaches: audio
information, by means of messages describing the en-
vironment to the user [23], [14], [13], [24], [8], [25], [7],
and sonification, encoding in audio signals information
concerned with the sensed area [26], [27], [28].

Our proposal, outlined in Figure 1, extends a very pre-
liminary prototype [29] enabling dynamic obstacle detection
and categorization, GPS localization and navigation capa-
bility combining features of ETS and SLS in a compact
and lightweight setup. It aims at overcoming limitations of
previously proposed mobility aids taking advantage of state-
of-the-art embedded vision technology. Moreover, compared
to other solutions based on active 3D vision technology (e.g.,
those based on the Kinect sensor) our proposal is suited not
only for indoor but also for outdoor environments. Finally, it is
worth to point out that we do not aim at replacing the white
cane but rather at using it in synergy with our proposal in
order to enrich understanding of the explored environment.

Iwww.blindsquare.com

Fig. 2. On the left, hardware components of the proposed mobility aid:
custom RGBD camera (= 90 g with lenses and holders), embedded computing
platform (= 50 g), glove with micro-motors for tactile feedback (few
grams), the pocket battery (= 70 g), bone-conductive headset (=~ 45 g) and
smartphone. In purple, the optional components. On the right, the overall
system worn by a user.

III. PROPOSED MOBILITY AID

In this section, we describe the main components of our
wearable mobility aid shown in Figure 2.

A. 3D sensing and computing platform

3D sensing is carried out by a custom RGBD sensor [30]
based on stereo vision technology. It provides dense and
accurate depth map processing synchronized stereo images at
more than 30 fps (up to 640 x 480 resolution) according to
state-of-the-art stereo vision algorithms implemented into a
low cost FPGA (Spartan 6 model 75 in the reported setup).
Specifically, we have mapped into the FPGA a complete stereo
vision pipeline including a custom and modified version of
the SGM algorithm [31]. The output of the RGBD sensor
(reference rectified image and disparity map) is sent, via
USB at about 20 fps, to the embedded computer Odroid U3,
in charge of obstacle detection/categorization. Given the 3D
map and the left image provided by the camera, the Odroid
performs all the vision processing and sends feedback to the
user. It is worth to observe that without mapping 3D sensing
algorithms into the FPGA, the overall frame rate enabled by
the Odroid would be much lower.

B. Feedback interface

In order to enable a safe and effective autonomous naviga-
tion, a well designed feedback strategy is required to perceive
the explored environment. For this purpose we devised a hy-
brid interface, exploiting tactile and audio stimuli. Following
the guidelines provided in [1], our solution was aimed at
obtaining an intuitive, yet effective, user interface.

According to the suggestions gathered from visually im-
paired users during the development of the first prototype, we
designed a vibro-tactile glove, to be worn on a single hand,
that does not prevent to use the same hand for other tasks
(e.g, for the white cane or a mobile phone). Three micro-
motors, driven by the GPIO of the Odroid, are placed on
different fingers (inch, middle and pinky), each one related to
a different Volume of Interest (VOI), as depicted in Figure 3,
analyzed by the obstacle detection module. Compared to other
solutions (e.g., [29]), this approach, suggested by visually
impaired, increases sensitivity to vibrations with respect to
arms and back regions. Moreover, this strategy is also less



Fig. 3. The three VOIs in front of the user sensed by our system.

cumbersome. In the current setup, in order to have a more
intuitive strategy, information concerned with the distance to
the closest obstacle is provided by means of audio messages
without exploiting depth modulation (e.g., vibration frequency
provided by micro-motors inversely proportional to depth).

Audio messages are synthesized by the Odroid and sent to
a bone-conductive headset in order to not isolate the person
from the environment. Alternatively, audio messages can be
wirelessly sent by the Odroid to a client App running on
a smartphone (with the iOS operating system) and synthe-
sized by its audio subsystem. The system allows a flexible
configuration of the frequency of messages (e.g., warning
continuously the user or when the distance between user and
obstacle significantly changes). When using the client App,
the feedback can jointly work with other navigation systems,
fading route indications when an obstacle appears. To improve
user’s experience, it also provide several configuration settings
by means of assistive touch technology, which aids many
people with visual impairments to use smartphone in everyday
tasks [1].

IV. PROCESSING PIPELINE

In this section, we describe the computer vision pipeline
for obstacle detection and categorization implemented on the
embedded device Odroid U3. The output is forwarded to the
user for a prompt reaction to obstacles.

A. Obstacle detection

Our system, starting from the dense disparity map provided
by the RGBD sensor, computes on the embedded CPU the
point-cloud according to (1) mapping each point with a valid
disparity value to the corresponding 3D point of coordinates
(X.,Y., Z.) wrt. the camera reference system by knowing
the baseline of the stereo camera b, the focal length f, the
optical center (ug,vg) and the coordinate (u,v) of the point
at disparity d.

bf _ Ze(u —ug) _
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Fig. 4. Obstacle detection pipeline. a) left image acquired by the 3D sensor
b) disparity map provided by the depth sensor c) bird-view re-projection,
highlighting the 3 analyzed VOIs, green when no obstacles are present inside,
red otherwise d) Final segmentation w.r.t. the left image, encoding in green
the ground plane, in red the detected obstacles, in yellow the rest of the scene.
The blue bounding boxes in ¢) and d) highlight the closest obstacle detected

From the point-cloud, a robust RANSAC framework [32]
allows us to obtain a reliable estimation of the ground plane
equation. This information enables to discriminate between
ground plane (the safe region on which the user can walk
onto) and any other object not laying on this surface. Once
such plane has been detected, the point-cloud is reprojected
on it as a bird-view map. For this purpose, we determine
the intersection between the plane equation, in the camera
reference system, and the optical axis of the camera. On such
point, we build a new reference as depicted in Figure 3.

Nevertheless, the RANSAC method detects the ground
plane as the largest planar surface in the sensed point-cloud;
it fails when this assumption is violated, for example in
presence of a large obstacle or a planar surface different from
the ground (e.g., a wall). Also noisy depth measurements
affects RANSAC algorithm. In order to deal these issues, we
apply a Kalman filter [33]. It improves the overall stability
of the raw plane equation computed from noisy point-clouds,
allows to filter out outliers and leads, consequently, to a more
accurate bird-view map. Moreover, its predictive model can
also provide plane estimation when the previous module fails
(e.g., in presence of large occlusions). Despite this positive
fact, in this latter case the predicted plane equation gets
less reliable increasing the amount of consecutive missing
measurements. Of course, an IMU, not deployed in our current
pure vision-based system, might improve effectiveness in
plane estimation under similar circumstances as well as the
overall plane estimation phase by fusing visual measurements
with inertial data.

Once obtained the reference system, the point-cloud is
processed to obtain two bird-view maps: an Occupancy Map
(OM), encoding the volumes occupied by obstacles, and a
Digital Elevation Map (DEM), showing their maximum height.
To build them, the observed environment is split into bins
laying on the detected plane. The number of 3D points from
the cloud assigned to a single bin represents the occupancy,
while the Y coordinate (according to reference system in
Figure 3) of the highest point inside a bin represents its
elevation. We process these maps by applying threshold values
on both occupancy and height, in order to further filter out
noisy measurements. In particular, the threshold value o,
applied to the occupancy is obtained dynamically according
to the Otsu’s method [34]. In the current setup we do not take



advantage of the height map. However, we plan to use it to
detect suspended hazards higher than the user itself and, thus,
not hindering the way. The remaining elements on the map,
representing possible obstacles, are filtered by a hysteresis with
thresholds t;4,, and tp;gpn; looking at the last N frames, an
element is considered obstacle when it reaches %45, detections
and until it falls below t;,, again. Finally, we look for the
obstacle closest to the user into the three VOIs, depicted in
Figure 3. At the end of this process, as reported in Figure
4 column c), we obtain an image showing the ground plane
(superimposed in green), the closest obstacle (in red) and
the background objects (in yellow). Observing Figure 4, it
is worth to note that, how suggested by visually impaired
users, the three VOIs do not cover the whole field of view
(about 60 degrees). In fact, all of them agreed that only a
small portion of the scene in front of the user needs to be
analyzed, corresponding to the center volume shown in Figure
4. A wider zone would make difficult to detect some important
elements in the scene like open doors or narrow passages.

B. Obstacle categorization with deep learning

Machine learning techniques have been widely adopted
in many practical applications and deep-learning is one of
the most effective techniques for scene understanding. A
deep neural network is a multilayer architecture with layers
connected by non-linear transformations. In computer vision,
CNNSs are deep neural networks made of several layers, called
convolutional layers, that extract features from the images by
applying several normalization and filtering operations, and
a final classifier, typically, a Multi Layer Perceptron (MLP).
Compared to other machine learning techniques, such as Bag
of Visual Words [35], that rely on an explicit feature extrac-
tion phase, a CNN allows for a higher level of abstraction
deploying adaptive convolutional layers. LeCun et al. [36]
reported how such multistage architectures yield to significant
improvements compared to a single layer architecture.

In our semantic labeling module, we adopt a LeNet ar-
chitecture [37], in particular a 2-layers plus a 2-levels MLP
network, as shown in Figure 5. The Bank Filter and Feature
Pooling blocks works with 16 and 256 5 x 5 kernels, while a
spatial convolution is applied, randomly linking nodes in the
network with a fan-in of 1 for the convolutional layers and 4
for the hidden layer of the MLP. Finally, the MLP works on
128 5x5 kernels. Training has been carried out deploying the
Negative-Likelihood as loss function, minimized by means of
back-propagation performed using BFGS [38]. The framework
used to train the CNN and integrated for real-time semantic
labeling in the embedded CPU board is Torch 7 [39].

Our strategy, focusing on the recognition of the closest
obstacle, is driven by practical and performance issues. While
it is important for the user to be aware of the presence of
possible hazards on the scene, it would be difficult to perceive
the nature of all of them intuitively and in a small amount
of time, so we decided to focus on the recognition of the
closest (and, probably, the one the user will meet first) to
not overwhelm the user with too many details. Moreover, to
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Fig. 5. Overview of the obstacle categorization module. On top, LeNet
[37] model architecture. On bottom, an example of each class (one class
per column) from the training dataset, containing 1000+ instances per class,
showing reference image, disparity map computed by the RGBD sensor and
automatically segmented obstacle.

properly categorize each element on the scene, more complex
networks could be deployed (e.g., R-CNN [40]), able to deal
with the task, but unsuitable for an embedded device such
as the Odroid U3, while LeNet is able to process data in a
reasonable amount of time on such device as we’ll report in
the next section.

V. EXPERIMENTAL RESULTS

In this section we provide experimental results concerned
with several aspects of our wearable mobility aid. The camera
was configured with monochrome imaging sensors, a res-
olution of 320 x 240, a baseline of 6.1 cm, focal length
of 3.8 mm, enabling a 20+ fps for the Odroid embedded
platform. The DEM and OM maps have been built according
to 2 X 2 cm size bins. The sensed area for obstacle detection
was set from 0.5 m up to 3 m. In this range the camera
setup allows depth resolution of 0.17 cm for nearest point
and 6.15 cm for the farthest ones. We applied hysteresis
thresholds of 1 and 3 on the last 5 frames, drastically reducing
misdetection/false alarms with a negligible detection delay at
20+ fps. Our evaluation was carried out in natural and man-
made environments. We trained our CNN to recognize eight
categories of obstacles, shown in Figure 5, providing 1000+
samples for each class. We’d like to observe that a larger set
of categories and a larger training set for each category could
be deployed by the network without any additional overhead
during real-time processing.

A. Time analysis and battery life

Obstacle detection on the Odroid U3 takes about 30 ms,
a value compatible with the frame rate of the depth sensor.
The categorization process is performed by a different thread,
in charge to recognize an obstacle when it is detected and to
send the outcome to the client application (by means of an
ad-hoc wifi network). Due to its higher execution time (about
140 ms on the Odroid), it is carried out on a subset of the
total number of frames, in particular 1 out of 5. However, it



#Sequence | #TP #TN #FP  #FN | Precision  Recall #Sequence  Environment | #TP #Recognized | %Recognized
1 230 3354 71 2 76.41% 99.57% 1 A 230 167 72.60%
2 1557 4677 3 101 99.81% 93.91% 2 C 1557 1339 86.00%
3 742 2348 31 75 95.99% 90.82% 3 B 742 442 59.57%
4 5824 638 15 46 99.74% 99.22% 4 B 5824 4298 73.80%
5 2142 8278 82 82 96.31% 96.31% 5 A 2142 1824 85.15%
[§ 1552 3797 0 72 100.00%  95.57% 6 C 1552 978 63.01%
7 498 1513 0 134 100.00%  78.79% 7 B 498 384 77.10%
8 676 1319 0 32 100.00%  97.62% 8 B 676 514 76.04%
9 1428 1812 107 171 93.02% 89.30% 9 B 1428 581 40.69%
Overall 14649 27736 309 715 | 97.93% 95.34% Overall - 14649 10527 71.86%
TABLE I TABLE II

AVERAGE RESULTS CONCERNED WITH DETECTION ON 9 SEQUENCES
(43409 FRAMES) ACQUIRED IN URBAN AND NATURAL ENVIRONMENTS.

is worth to note that the user is unlikely to face two different
obstacles in such a short amount of time (i.e., less than 200
ms). The overall system, including RGBD sensor and haptic
interface, has a power consumption of about 5 Watt (4.95 V
and 1.05 A). Using the small battery (68 g, 3000 mA/h) shown
in Figure 2, the overall system runs for about 3 hours, up to
10 hours with a slightly weighter (231 g) 10000 mA/h battery.

B. Obstacle detection and categorization

We also carried out an evaluation of the proposed mobility
aid on 9 different sequences (43409 frames), acquired in urban
and natural environments, in order to measure the reliability in
terms of obstacle detection and scene interpretation capability.
Some of these sequences are available on Youtube?.

Tables I reports experimental results concerned with ob-
stacle detection on each of the 9 sequences. Moreover, the
table also summarizes, in the bottom row, the average results
gathered on all the 9 sequences. From left to right, the columns
contain the sequence (total for the bottom row), true positives,
true negatives, false positives, false negatives, precision and
recall. Precision is the ratio between true positives and true
positives plus false positives. Recall is the ratio between true
positive and true positive plus false negatives. Observing the
bottom row of Table I we can notice that, on average, our
system achieve high precision and recall indexes (respectively,
97.93% and 95.34%).

In table IT we report the outcome of obstacle categorization
for each of thee 9 sequences and, at the bottom, the average
results on all the sequences. The columns report the number of
the sequence, the true positive related to detection, the amount
of correct recognitions and its percentage (withe respect to
the whole amount of detected obstacles). On average, we can
notice that the correctness (last column) is nearly 72%. The
best result (86%) has been obtained on sequence #2, natural
environment, while the worst result has been obtained with
sequence #9, mostly concerned with an urban environment.
Sequences #6, #8 and #9 are available on Youtube.

C. Evaluation with blind people

We also carried out extensive tests with the help of blind
users during different stages of the development phase. A
first prototype [29] was tested by a single user, who mainly

Zhttps://www.youtube.com/channel/UChkayQwiHJuf3nqMikhx Alw

AVERAGE RESULTS CONCERNED WITH CATEGORIZATION ON 9
SEQUENCES (43409 FRAMES), ACQUIRED IN NATURAL (A), URBAN (B)
AND MIXED (C) ENVIRONMENTS.

provided a critical suggestion regarding the feedback strategies
(previously made of bracelets put on both arms and the
back, now improved with a tactile glove). He also suggested
to include in our system GPS navigation capabilities. An
improved and more compact version of our mobility aid was
tested by about 15 people during a workshop concerning IT
applied to disabilities (Handimatica 2014%), with very positive
feedbacks and additional suggestions. Finally, 5 more blind
users tested the prototype described in this paper (without
object categorization enabled) with the support of Institute
of Blind people (Istituto dei Ciechi) Francesco Cavazza* in
Bologna.

According to what stated in [1] and [2], the overall testing
phase included more than 20 users, with different degrees of
visual impairments. Some of them accustomed to the white
cane while some others not. This latter fact in particular
led to different behaviors during the evaluation: while some
of them were rapidly confident with the haptic feedback,
others, accustomed to the white cane, took more time to
trusts in the feedback provided by our system. However, once
used to our system both of them have been able to safely
explore the surrounding environment. Another important factor
is the frequency of the audio messages (some users feel a
continuous voice to be overwhelming, while others are glad
to be constantly noticed of the presence of obstacles, even
when they stand still), suggesting us to allow the user to setup
this strategy according to the smartphone app. As future work
we plan to include in the proposed mobility aid cross-walk
recognition capability [41].

VI. CONCLUSIONS

In this paper we have described a wearable mobility aid for
people suffering of visual impairments. The system relies on a
custom RGBD camera, providing dense depth measurements,
and an embedded CPU board where we have mapped a vision
based obstacle detection pipeline. Our system also provides
semantic categorization of detected obstacles by means of
a Convolutional Neural Network. Our system is extremely
small, lightweight and enables to obtain real-time accurate
details concerning the explored environment by means of an

3www.handimatica.com
4www.cavazza.it



haptic interface and audio messages. The experimental results
reported show that our system has excellent detection perfor-
mance (close to 98% of detection rate) and very promising
object categorization capability (close to 72% of correctness).
In particular, this latter fact could be further improved, by
extending the training dataset, without affecting the overall
execution time.
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