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Fig. 1. Enriched perception with explicit temporal dynamics. Existing end-to-end autonomous driving frameworks ignore temporal
information within the perception module, as it only processes a single frame at once, dampening the collision avoidance capability of
the model. By explicitly modeling such cue, the model can better understand the dynamics of other agents such as cars and pedestrians,
and better avoid collisions with them.

Abstract— End-to-end autonomous driving systems have re-
cently made rapid progress, thanks to simulators such as
CARLA. They can drive without infraction of common driving
rules on uncongested roads but are still struggling with dense
traffic scenarios. We conjecture that this occurs because it lacks
understanding of the dynamics of the surrounding vehicles,
caused by the absence of explicit short-term memory within
the perception path of end-to-end models. To address this
challenge, we revise the perception module to explicitly model
temporal information, by extending it with an auxiliary task
that is well-known in computer vision research: optical flow.
We generate a novel benchmark using the CARLA simulator
to train our model, FlowFuser, and prove its superior ability
to avoid collisions with other agents on the road.

I. INTRODUCTION

Achieving end-to-end autonomous driving has been one of
the most ambitious goals pursued by the research community
since the last decade. To this end, a suite of sensors ranging
from color cameras to LiDARs are used to perceive the sur-
rounding environment, whereas a neural network is deployed
to predict direct vehicle control, thus casting perception and
planning in a full-stack manner [2], [4], [23], [28].

The latter task was tackled using two main approaches:
imitating an expert (Imitation Learning) [3], [14], [15],
[24] or completely data-driven mainly using Reinforcement
Learning [13], [29]. Independently on the approach, planning
represents the ultimate goal for any of these frameworks, thus
attracting most of the community’s efforts regarding evalu-
ation paradigms and network designs. For instance, from a
testing perspective, planning performance can be measured
both in an open-loop or closed-loop manner. The former
protocol compares the decisions of the trained model with

those of an expert driver: these are possibly encoded within
the driving routes followed to collect any driving datasets,
both real or synthetic. Although scalable, this protocol biases
the evaluation to fewer possible conditions occurring during
driving. The latter, instead, consists of running the trained
model inside a simulation engine [9], where it can draw its
own driving path, and external agents can react according to
the specific decisions made by the model. While it allows
for more comprehensive testing, this protocol is hard to
implement with real data, thus making the evaluated model
sensitive to synthetic to real domain shifts.

For what concerns network designs, the common trend
consists of identifying meaningful representations to model
the perceived environments – e.g., Bird-Eye View (BEV)
maps [18], [19], [24] – that are then processed by a specific
network module in charge of predicting car controls, for in-
stance, to reach the next waypoint along the driving path. As
this latter embodies the planning strategy of the whole model,
most of the focus of recent, state-of-the-art solutions has
been on improving it [18], [19] while taking perception for
granted. However, we argue that the design of the perception
component of an autonomous driving model plays a funda-
mental role. Indeed, the ability to extract richer cues from
the surrounding environment has the potential to improve
planning itself, even in the absence of further architectural
modifications. Specifically, the temporal dimension has been
ignored so far by the perception modules of most existing
solutions [18], [19], [24]. Whereas some of them take this
into account directly in the planner [16], [24], by embedding
it in the hidden state of a recurrent neural network, we



argue that explicit modeling of temporal dynamics within the
perception part has the potential to deliver vital information
– e.g., the motion of vehicles or pedestrians in front of us –
to further improve the planning performance, as well as the
overall explainability of the system.

In this paper, we take a step back and focus on designing a
perception module capable of explicitly processing temporal
information. Specifically, we extend the input stem to process
multiple, consecutive frames to perform optical flow estima-
tion [33] as an auxiliary task within the perception head.
This will provide the downstream planning module with
richer features encoding explicit short-term memory, crucial
to better understanding the behavior of other, independent
agents moving in the surrounding environment – such as
other vehicles and pedestrians, for instance. This knowledge,
although cheap to obtain from images, combined with the
implicit memory modeled by the recurrent structure of the
planning module will allow for predicting safer trajectories
and reducing collisions with moving agents, as shown in
Figure 1. To prove the effectiveness of our proposal, we
extend the perception module of TransFuser [16], [24] –
a well-known and widely used baseline on the CARLA
autonomous driving benchmark – implementing FlowFuser.

Furthermore, training our model requires additional, op-
tical flow annotations that are usually not provided by
the common training datasets used in the field [16], [24].
Purposely, we generate a brand new benchmark using the
CARLA engine, involving eight cities from the Leaderboard
v2.0 under very different weather conditions to maximize the
variety and amount of training samples. For this purpose, we
adapted the codebase used to generate data for Leaderboard
v1 and developed a data generation pipeline, as well as a
closed-loop evaluation process. To improve the scalability
and the efficiency of the generation process, we investigate an
alternative annotation technique to obtain ground truth BEV
semantic segmentation maps, simply relying on a CARLA
semantic camera to replace the expensive and storage-
consuming offline procedure carried out by the previews
works [16], [24], [34].

Our main contributions can be resumed as follows:
• we investigate, for the first time, the explicit modeling

of temporal information within the perception module
of end-to-end autonomous driving models, in the form
of optical flow estimation from images.

• we generate a new benchmark tailored to our study,
based on CARLA Leaderboard v2.0, providing addi-
tional ground truth annotations for optical flow and
annotating BEV semantic segmentation images in a
cheaper and more scalable way

• to validate our claims, we extend TransFuser [16], [24]
into FlowFuser. Our experiments prove the effectiveness
of our proposal, as well as show the pivotal rule of
optical flow within the perception module compared
to other auxiliary tasks such as depth estimation and
semantic segmentation.

Our project page is available at https://noce99.
github.io/FlowFuser/.

II. RELATED WORK

The idea of teaching an autonomous driving system to
imitate humans has a long history [22]. This paradigm is
called Imitational Learning, and it uses data from an expert
to teach a system how to drive [3] [14] [15] [17]. Its main
counterpart is represented by Reinforcement Learning, which
has recently started to achieve promising results [13] [29].
The two differ in the way of approaching the problem: while
the former paradigm lets the model imitate the humans’
driving style, assuming it as the solution to the task, the
latter encourages the model to find its own solution to the
task, without explicit guidance about it. Recently, the former
paradigm became very popular, thanks to the availability of
closed-loop driving simulators such as CARLA [9].

Pioneering works propose using neural networks to elabo-
rate cameras and LiDAR information [1] to produce a BEV
image as the output, starting from which classical control
methods are applied to steering, accelerating, and braking.
More recent works moved toward end-to-end models, ca-
pable of directly predicting the steering, accelerator, and
brake position as their output [12], followed by frameworks
predicting discrete navigation commands (straight on, turn
right, etc.) [6] [7] and later on, waypoints starting with
TransFuser [24] [16]. Specifically, this latter [16] proposed
and evaluated two different strategies to predict waypoints as
the future positions of the vehicle, being equally distanced
in time or in space, respectively.

Lately, foundation models are emerging as an alterna-
tive paradigm to autonomous driving [5], [26], [27], [32],
integrating the ability of large language models (LLMs)
to reason about longtail scenarios. However, any of these
approaches ignore the explicit temporal information available
to the perception module: this latter has been modeled some
approaches distilling a readily available optical flow map
[31], thus not in an end-to-end manner, or by implicitly
learning good spatio-temporal features [14], yet by requiring
prior knowledge of the camera poses.

III. DRIVE WITH THE FLOW

In this section, we introduce our framework designed
for improved temporal awareness in end-to-end autonomous
driving. As we argue the perception module of modern
models [16], [24] lack explicit processing of this cue, we
propose the introduction of an auxiliary task – optical flow
estimation [33] – among those already carried out. We will
show how this simple solution can greatly improve the
overall planning process by the model and improve its ability
to avoid moving obstacles.

A. FlowFuser Architecture

Figure 2 shows an overview of our multi-modal frame-
work, FlowFuser, which extends TransFuser [16], [24], a
popular baseline. It processes two main input modalities,
respectively images and LiDAR point clouds. The latter are
converted into 2-bin histograms over a 2D BEV grid of
32×32 meters, discretized into an image of fixed resolution
equal to 256×256 pixels. The current speed and goal location

https://noce99.github.io/FlowFuser/
https://noce99.github.io/FlowFuser/


Transformer MLP GRU 
Decoder+

Image
Encoder

BEV
Encoder

Conv.
Decoder

Conv.
Decoder

Conv.
Decoder

Conv.
Decoder

Conv.
Decoder

Image (t)

Image (t-1)

LiDAR BEV (t)

Optical Flow (t-1➜ t) Depth (t) Semantic 
Segmentation (t)

Bounding  Boxes (t)Semantic BEV (t)

Waypoints (t)

Perception path

Planning path

Explicit temporal
path

+ speed, 
waypoints

Fig. 2: FlowFuser architecture. Following TransFuser [16], [24], our model deploys a multi-modal perception module
(blue) and a planning module (green). FlowFuser extends the perception module to process an additional image at time
(t−1), as well as with a convolutional decoder predicting the optical flow between the two images (red). The supplementary
supervision used to train this latter provides the planning module with richer features, encoding explicit temporal information.

are also inputs to the neural network. The whole architecture
is composed of two, main sub-networks: perception and
planning modules, respectively highlighted in blue and green
in the figure.

At any time stamp t, the former processes a single
color image and LiDAR BEV with two distinct instances
of a RegNetY-3.2GF backbone [11], [20], pre-trained on
ImageNet [25]. This backbone is composed of four stages.
Features extracted at different stages are processed by a
Transformer [30], thanks to the self-attention mechanism.
The encoders yield two sets of features, that are concatenated
and forwarded to the planning module, which will process
them to predict a set of waypoints using a decoder, composed
of Gated Recurrent Units (GRUs) implementing a short-term
memory mechanism. In parallel, they are also processed by
several decoders for estimating intermediate outputs, that are
used as entry points for supplying auxiliary supervision to
the overall model. Specifically, image features are used to
estimate depth and semantic segmentation maps (top right in
the figure), whereas BEV features are processed to predict a
semantic BEV and bounding boxes related to the presence
of obstacles on the path (at the bottom in the figure).

Although the supervision provided for these preliminary
perception tasks is crucial for training the original TransFuser
[16], [24], we argue it lacks temporal awareness, which
is offloaded entirely to the planning module within the
hidden state of GRUs. Accordingly, we extend the RegNetY
backbone processing the color image to support a second
image as input – i.e., the frame at time (t − 1) – by
replicating the weights of the first layer and normalizing
them according to [10]. Then, we added a third decoder in
charge of predicting optical flow out of the features yielded
by the image encoder – highlighted in red in Figure 2.
By supervising the decoder during the first stage of the
training, we encourage the RegNetY backbone to extract
features encoding the temporal information contained in

the two subsequential frames, which may be crucial to
better understand the behavior and motion of other agents
navigating on the road such as cars, pedestrians or cyclists.

A reader familiar with the optical flow literature [33]
may argue that a simple encoder-decoder network processing
concatenating images [8] does not represent the best choice
to predict accurate flow maps. However, it is worth stressing
that optical flow only represents an auxiliary task to Flow-
Fuser and that a simple design like the one we propose is
sufficient for improving the temporal awareness of the model
and its ability to avoid collisions.

B. Dataset Creation

In order to train FlowFuser with the necessary, additional
supervision, we created a new dataset using the CARLA
Simulator [9]. We generate multiple runs in the eight cities
provided by the simulator, covering 1 square kilometer each
on average. We spawn autonomous agents such as vehicles
and pedestrians, moved by CARLA using privileged informa-
tion to optimize the resource usage during simulation. During
the process, we spawn a car equipped with the sensor suite
shown in Figure 3 on the left.

Data collection. To gather the training data, we set the
simulation frequency to 20 Hz. We then collect data from
all sensors simultaneously every five simulation frames –
except for the RGB camera, from which we also capture
the following frame, as it is needed to compute optical flow.
We choose a five-frame time step as a trade-off between the
decrease in the similarity of consecutive data frames and the
length of runs.

To increase data variety, we simulate diverse weather
conditions thanks to the precise control enabled by CARLA
according to cloduiness, precipitation, wind, and fog intensi-
ties. We vary these values for each run according to a Beta
PDF (Probability Distribution Function), defined in Equation
1, whose parameters are shown qualitatively in Figure 3 on



Fig. 3: CARLA acquisition and weather generation settings. Our data generation engine extends the established sensors
suite (left) with an optical flow camera and a further semantic camera (both highlighted in red). For modeling weather
variety, we sample cloudiness, precipitation, wind, and fog intensities according to some PDFs (right).

Fig. 4: Ground truth semantic BEVs comparison. Maps
obtained during offline processing (left) or captured on the
fly by the CARLA semantic camera (right).

the right.

f(x;α, β) =
xα−1(1− x)β−1

K(α, β)

with K(α, β) =

∫ 1

0

xα−1(1− x)β−1 dx

(1)

The final dataset combines 90 simulations, each collecting
2000 data frames for a total of 12.5 simulated hours.

Data Processing. After collection, we processed data to
make it suitable for training FlowFuser. We replace the
ground truth semantic BEV obtained after offline processing
[21], [34] with the segmentation maps collected by the
additional semantic camera we attached to the sensor suite.
The major shortcoming of replacing the offline procedure
with a camera from CARLA is in the occlusions derived
by the presence of objects higher over the ground, thus
appearing in place of the road in the BEV map. Figure 4
shows two examples obtained according to the two method-
ologies, highlighting on the right how the CARLA camera
is sensitive to the presence of trees or bridges occluding the

road. Nonetheless, we will show in our experiments how this
does not affect significantly the performance of FlowFuser.

Figure 5 provides an overview of the information stored
within a single data frame in our dataset. Specifically, (A) and
(B) are the outputs of the RGB camera in two consecutive
frames – previous and current timestamp – (C) is the output
of the depth camera (log-depth), (D) is the optical flow
camera output, (E) is the output of the front semantic
segmentation camera, covering the following seven classes:
roads, lanes, pedestrians, vehicles, traffic lights, signs, and
unknown; (F) is the LiDAR BEV, (G) shows the ground truth
waypoints and (H) the target point the vehicle is heading
to; (J) and (K) shows a further example of ground truth
semantic BEV according to the two sources described before,
(L) shows ground truth bounding boxes for vehicles (green)
and pedestrians (red); finally, (M) and (N) show the actual
and target speed.

IV. EXPERIMENTAL RESULTS

In this section, we report the outcome of our experiments.

A. Implementation Details

We implement FlowFuser starting from the CARLA
Garage codebase [16]. Following the protocol used for
TransFuser [16], [24], we run two training phases. During the
first stage, we train the backbone and the decoders in charge
of predicting the intermediate outputs – respectively depth,
semantic segmentation, and optical flow maps, together with
semantic BEV and bounding boxes. During the second phase,
the planner module is trained to predict instant speed and
waypoints. We use the same loss functions adopted by
TransFuser, and add an L2 loss function between predicted
and ground truth optical flow, both normalized in [-1, 1]. The
flow loss is multiplied by 1e3 to balance the contribution of
the different terms. During both stages, we run 30 epochs of
training, with a total batch size of 180. Both require between
18 and 22 hours to complete, over 4 A100 GPUs.

At inference time, we follow [16], [24] and calculate the
steering angle, acceleration, and brake using a PID controller.
To minimize human intervention, we remove any additional
hardcoded checks in the inference code aimed at stopping
the vehicle – except a gentle push to the model in case it
remains stuck in the absence of obstacles. The same policies



Fig. 5: Input and output modalities in a single data frame. We show the multi-modal input processed by FlowFuser
(A,B,F,H,M), as well as the ground truth annotations used for training (C,D,E,G,J,K,L,N).

TABLE I: Experimental results. We compare the results achieved by TransFuser and FlowFuser on evaluation routes, and
report the impact of using the ground truth semantic BEVs generated online rather than offline. All models are evaluated
over 3 independent trainings, reporting mean and standard deviation. Best overall results in bold.

TransFuser [16], [24] FlowFuser (ours) FlowFuser (ours) + online BEV masks
Town Compl. [%] ↑ Coll. ↓ Time [s] ↓ Compl. [%] ↑ Coll. ↓ Time [s] ↓ Comp. [%] ↑ Coll. ↓ Time [s] ↓
Town 1 99.1 ± 0.8 0.10 ± 0.02 136.0 ± 7.3 93.1 ± 0.3 0.10 ± 0.10 163.2 ± 14.5 95.2 ± 2.1 0.12 ± 0.07 140.3 ± 16.2
Town 2 96.1 ± 5.5 0.12 ± 0.03 158.6 ± 7.1 89.2 ± 8.5 0.20 ± 0.03 104.9 ± 6.1 93.2 ± 1.5 0.41 ± 0.08 114.8 ± 6.4
Town 3 82.4 ± 6.3 1.50 ± 0.02 272.3 ± 12.3 84.9 ± 2.0 0.65 ± 0.15 275.1 ± 1.9 91.4 ± 4.4 0.27 ± 0.18 257.2 ± 2.5
Town 4 55.2 ± 8.5 1.03 ± 0.63 233.3 ± 2.3 57.08 ± 3.5 0.55 ± 0.05 276.7 ± 5.4 51.3 ± 6.2 0.47 ± 0.09 278.9 ± 3.8
Town 5 97.8 ± 2.2 0.79 ± 0.09 156.2 ± 5.0 92.25 ± 7.8 0.06 ± 0.02 117.2 ± 16.5 95.6 ± 4.5 0.24 ± 0.05 177.5 ± 20.2
Town 6 95.4 ± 4.6 1.55 ± 0.45 209.6 ± 5.8 96.2 ± 3.6 1.02 ± 0.29 198.2 ± 21.3 91.7 ± 5.5 0.81 ± 0.18 217.4 ± 13.5
Town 7 18.6 ± 0.7 0.45 ± 0.05 264.5 ± 1.5 22.3 ± 1.5 2.02 ± 0.17 233.4 ± 4.5 21.3 ± 4.5 1.65 ± 0.17 295.3 ± 3.5
Town 10 97.8 ± 0.3 1.88 ± 0.38 114.1 ± 1.5 97.3 ± 2.5 3.02 ± 0.06 117.1 ± 1.8 94.1 ± 4.7 2.63 ± 0.17 111.5 ± 1.7
Average 87.1 ± 0.3 0.67 ± 0.01 194.8 ± 0.9 90.9 ± 0.2 0.35 ± 0.01 195.0 ± 1.3 88.7 ± 1.0 0.41 ± 0.03 184.9 ± 1.2

are applied in any experiment, both when using TransFuser
or FlowFuser.

B. Evaluation

For testing our framework, we use CARLA Scenario
Runner, a plugin generating the same starting traffic con-
dition multiple times over the same route, allowing for a
fair evaluation of different models. We have generated ten
evaluation routes per city, each a few kilometers long, not
overlapping with the training routes. A single evaluation
run can terminate both if the model gets stuck or if it
fully completes the route. We have selected three evaluation
metrics: the route completion percentage (Compl., the higher
the better), and the number of collisions with other vehicles,
pedestrians, or objects, normalized over the number of routes
(Coll., the lower the better). We also report the time needed
to complete the route, although not entirely meaningful in the
case of models achieving different completion percentages.

TransFuser vs FlowFuser. Table I collects the results
achieved by both the original TransFuser model [16], [24]
and our FlowFuser on the eight cities, by averaging over
the ten routes in each. We report metrics on the single
cities, as well as the overall average. Overall, FlowFuser
dramatically reduces the amount of collisions with other
vehicles and pedestrians, from 0.67 to 0.35 on average. The
improvement is particularly evident in Towns 3, 5, and 6,
where the traffic is denser and more agents are moving
around. This comes with a small improvement in completion,
from 87.1 to 90.9%, and an average increase of 0.2 seconds
to the time required to complete routes. Figure 6 shows a
qualitative example with FlowFuser, thanks to the temporal
information modeled within its perception path, avoiding a
collision where TransFuser cannot.

Offline vs online ground truth BEVs. In the right-most
part of Table I we report the results achieved by training
FlowFuser with the ground truth semantic BEV obtained
from the top-view CARLA semantic camera as an alternative
to those generated offline [21], [34]. FlowFuser performance
slightly decreases with this easier-to-obtain ground truth
replacement. A faster time in route completion is achieved.

C. Ablation Studies

We conclude our evaluation by conducting some ablation
experiments, aimed at assessing the importance of the dif-
ferent tasks carried out by the perception module on images,
as well as how the different weather conditions observed
at training time allow FlowFuser for more robust trajectory
planning in terms of collision avoidance.

Impact of the perception tasks. In Table II, we report
the results achieved by different variants of FlowFuser,
obtained by removing one of the image decoders in charge of
predicting optical flow – i.e., the original TransFuser – depth,
semantic segmentation. Overall, we can further appreciate
how optical flow plays a crucial role in enabling effective
collision avoidance. Indeed, by either removing depth or
semantics, we can notice a moderate increase in the average
number of collisions – respectively 0.10 and 0.06 compared
to the results shown in the mid column of Table I, versus
the 0.20 increase achieved by TransFuser when not enhanced
by the optical flow task. Interestingly, yet not surprisingly,
depth has a higher impact on collisions compared to semantic
segmentation, whose removal yields the lowest increase in
the number of collisions.

Impact of weather conditions. Table III compares the
results achieved by two FlowFuser variants, trained respec-
tively under different weather conditions (w/ wth.) or using
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Fig. 6: Qualitative results. From left to right, visualization of three consecutive frames observed by TransFuser [16], [24]
and FlowFuser when running on the same route. While the former collides with another car, our model avoids it thanks to
the explicit temporal information processed by the perception module – whose flow predictions are shown at the bottom.

TABLE II: Ablation study – impact of perception tasks.
Results by FlowFormer when trained without supervision
about depth estimation or semantic segmentation.

FlowFuser
Town Setting Compl. [%] ↑ Coll. ↓ Time [s] ↓

Town 1
w/o flow [16], [24] 100.0 0.00 130.9
w/o depth 100.0 0.00 151.1
w/o semantics 100.0 0.00 152.6

Town 2
w/o flow [16], [24] 92.2 0.10 162.1
w/o depth 91.1 0.40 109.9
w/o semantics 99.9 0.30 121.8

Town 3
w/o flow [16], [24] 86.9 1.50 281.0
w/o depth 86.9 0.50 281.3
w/o semantics 82.9 0.40 266.6

Town 4
w/o flow [16], [24] 58.6 0.40 235.5
w/o depth 52.7 0.40 252.7
w/o semantics 63.6 0.60 261.7

Town 5
w/o flow [16], [24] 95.6 0.70 157.1
w/o depth 100.0 0.80 127.4
w/o semantics 100.0 0.60 134.1

Town 6
w/o flow [16], [24] 90.8 1.10 215.4
w/o depth 100.0 0.80 240.8
w/o semantics 100.0 0.40 216.4

Town 7
w/o flow [16], [24] 19.1 0.50 263.3
w/o depth 45.3 0.80 211.1
w/o semantics 32.2 0.70 229.1

Town 10
w/o flow [16], [24] 100.0 0.10 112.9
w/o depth 100.0 0.00 121.1
w/o semantics 100.0 0.30 118.7

Average
w/o flow [16], [24] 80.4 0.55 194.8
w/o depth 84.5 0.46 186.9
w/o semantics 84.8 0.41 187.6

a dataset of equivalent size and variety, yet limited to
sunny weather only. Interestingly, although not impacting the
overall completion percentage significantly, a variegate set of
weather conditions observed during training plays a crucial
role as well in minimizing the number of collisions occurring
during FlowFuser driving. We conjecture that the absence
of weather events such as rain during training severely
affects optical flow estimation when these are met during
the evaluation, whereas their occurrence at training time
allows FlowFuser to focus only on the dynamics of the other
vehicles and pedestrians and to ignore raindrops.

V. CONCLUSIONS

This paper proved that explicit modeling of temporal
dynamics is beneficial to end-to-end autonomous driving
frameworks. We achieved this by introducing optical flow as

TABLE III: Ablation study – weather conditions during
training. Results by FlowFormer when trained with a variety
of weather conditions or sunny weather only.

FlowFuser
Town Setting Compl. [%] ↑ Coll. ↓ Time [s] ↓

Town 1 w/ wth. 92.8 0.20 177.7
w/o wth. 100.0 0.10 147.7

Town 2 w/ wth. 99.9 0.20 111.0
w/o wth. 100.0 0.30 103.3

Town 3 w/ wth. 82.9 0.50 272.1
w/o wth. 66.3 1.30 247.0

Town 4 w/ wth. 51.3 0.50 302.8
w/o wth. 53.4 0.60 321.9

Town 5 w/ wth. 84.5 0.00 138.0
w/o wth. 94.2 1.70 186.2

Town 6 w/ wth. 100.0 0.90 219.5
w/o wth. 100.0 0.70 257.2

Town 7 w/ wth. 24.9 0.40 245.8
w/o wth. 38.5 1.60 260.0

Town 10 w/ wth. 100.0 0.10 118.5
w/o wth. 100.0 0.60 117.9

Average w/ wth. 79.5 0.35 198.8
w/o wth. 81.5 0.86 205.2

an auxiliary task within the perception model, building our
FlowFuser on top of the TransFuser baseline. We generated a
new dataset for training and evaluating our proposal, whose
results support our conjectures.

Future directions. Temporal information could also be
modeled on the LiDAR side of the perception module,
by adding a further decoder to perform 3D scene flow
[33] estimation. Unfortunately, obtaining LiDAR scene flow
labels from CARLA is not trivial, as it does not provide a
custom sensor for this purpose. Future work will explore this
possibility.
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