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Abstract— We propose a novel framework to estimate the
confidence of a disparity map taking into account, for the
first time, the uncertainty affecting the confidence estimation
process itself. Conversely to other tasks such as disparity
estimation, the uncertainty of confidence directly hints that
the confidence should be increased if initially low, but with
high uncertainty, decreased otherwise. By modelling such a cue
in the form of a second-level confidence, or meta-confidence,
our solution allows for finding incorrect predictions inferred
by confidence estimator and for learning a correction for them.
Our strategy is suited for any state-of-the-art method known
in literature, either implemented using random forest classifiers
or deep neural networks. Especially, for deep neural networks-
based models, we present a multi-headed confidence estimator
followed by an uncertainty network, so as to predict mean
confidence and meta-confidence within a single network without
the cost of lower accuracy, a known limitation in literature for
uncertainty estimation. Experimental results on a variety of
stereo algorithms and confidence estimation models prove that
the modeled meta-confidence is meaningful of the reliability of
the estimated confidence and allows for refining it.

I. Introduction

Estimating depth from images often is the first step
allowing autonomous agents and robots to understand the
surrounding environment, and stereo matching [1], [2] is
one of the most popular approaches to achieve this goal. It
allows to retrieve the depth of any 3D point when captured
by two synchronized and calibrated cameras, specifically by
looking at the horizontal displacement (disparity) occurring
between its pixel coordinates on the two images. A vast
literature of algorithms exists [1], aimed at solving the
correspondence problem between pixels on the reference and
the target views, which are conventionally the left and right
images respectively. More recently, it was enriched by the
advent of deep learning [2] and a variety of solutions either
mixing neural networks and hand-designed strategies [3] or
deploying end-to-end neural networks [4], [5], [6].

Concurrent to the race for depth accuracy, confidence
estimation [7], [8] has been developed as a parallel research
track in the stereo matching literature, allowing for both
improvement to known stereo algorithms [9], [10], [11], [12],
[13] as well as for additional, higher-level applications [14],
[15], [16], [17]. Indeed, being aware of failures of the depth
perception pipeline represents an appealing capability for an
autonomous system. As for stereo algorithms, machine learn-
ing and recent deep learning brought the focus from hand-
crafted confidence measures [7] to data-driven strategies [8].
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Fig. 1. Confidence and meta-confidence estimation. Given
(a) a reference image and (b) its estimated disparity (e.g.,
by MCCNN-fst-CBCA [3]), we estimate (c) confidence by
means of a neural network or a random forest together with
(d) meta-confidence encoding confidence reliability. Bright
colors in (c,d) encode high confidence/meta-confidence.

Although achieving outstanding performance, learned
models and their confidence predictions are intrinsically
affected by some uncertainty [18], either linked to observed
data or the model itself. This uncertainty might explain
wrong confidence predictions and thus, potentially, could
help to correct them. Indeed, conversely to other tasks such
as disparity estimation itself for instance, for which knowing
the low confidence of a pixel does not give hints about its
correct disparity, by knowing that a confidence score has
high uncertainty would directly hint that in a manner score
should be increased if initially low, decreased otherwise.

We can see such uncertainty as a second-level confidence
or meta-confidence. Since ignored in the literature until now,
in this paper we study this aspect, we show how existing deep
learning models for confidence estimation can be extended
to take into account the meta-confidence and to exploit this
information to predict more reliable confidence score, thus
improving capability of an autonomous system to detect
failures of the stereo matching module. Existing strategies
to model the uncertainty of deep neural networks [18], [19],
[20], however, are ineffective for less complex tasks such
as confidence estimation. To improve the performance, we
present a multi-headed confidence estimator followed by an
uncertainty network, so as to predict mean confidence and
meta-confidence within a single network without the cost of
lower accuracy, a known limitation in literature [18].

We also show how existing random forest strategies al-
ready allow to retrieve this information for free and how,
similarly to the case of deep networks, it can be used to refine
the predicted confidence. In Figure 1, we show an example
of confidence and meta-confidence, this latter encoding the
complementary of the uncertainty over the first.

The main contributions can be resumed as follows:



• We consider for the first time the problem of modelling
meta-confidence in state-of-the-art confidence estima-
tion frameworks for stereo.

• We show how, if properly modeled, meta-confidence
is meaningful to detect incorrect confidence predictions
and how it can be used to refine and correct them.

• We show how existing methods based on random forests
already expose meta-confidence in a similar manner and
how it can be used to refine their predictions as well.

II. Related work

We briefly review the literature relevant to our work.
Confidence measures for stereo matching. Several con-

fidence measures have been proposed in the years, reviewed
and evaluated for the first time in [7]. With the advent
of machine learning first, followed by deep learning, the
confidence estimation task shifted towards data-driven ap-
proaches [21] thanks to the availability of stereo datasets an-
notated with ground-truth disparity labels. As a consequence,
confidence measures can now be classified into two broad
categories [8], [22], respectively hand-made and learned
measures, with the latter being consistently more effective
at distinguishing good from bad disparities compared to
previous strategies.

The first attempts to design learned confidence measures
consist into combining several hand-made cues (or measures)
as input to a random forest classifier [21], being the input
features extracted from the cost volume [23], [9], [10], [24]
or the disparity map [11], [12]. Then, deep learning solutions
have been proposed [25], [26], [27], [28], [29] deploying
small CNNs processing patches from the disparity map and
reference image, then moving to larger receptive fields [30]
and accessing the cost volume as well [31], [32], [33], [34].

In parallel, some works explored the possibility of training
state-of-the-art confidence estimators without the need for
ground-truth disparity labels, for instance by collecting stereo
videos in static environments [35], by distilling proxy labels
from a pool of hand-made measures [36] or from few
supervisory signals extracted from the disparity map and
input stereo pair [37] allowing for online adaptation.

Uncertainty estimation in deep networks. Finding a way
to estimate the uncertainty over the predictions of neural
networks has a long history as well [38], [39], [40]. The
main goal of most strategies is to regress a distribution in
place of a single output. This can be approximated in an
empirical manner, by sampling a finite number of weights
configuration for a given network [41], [42], [43], [44], [45],
and then computing mean and variance of the predictions.
Another strategy consists into learning output distributions in
a predictive manner, for instance by modelling a Laplacian or
Gaussian output distribution [18]. The two strategies model
two different type of uncertainties, epistemic and aleatoric,
connected respectively to the model itself or to different input
data. Recent works combined the aforementioned strategies
for several tasks, such as optical flow [46], self-supervised
monocular depth estimation [20] or joint depth, semantic
and instance segmentation estimation [47]. In particular, Ilg
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Fig. 2. Overview of meta-confidence estimation frame-
work. Given a disparity map, we estimate its confidence with
a neural network or random forest and wrong confidence
prediction by means of a meta-confidence map. We then
predict more reliable confidence with a refinement network.

et al.[46] proposed a multi-hypotheses model, predicting
multiple outputs and their uncertainties fed to a refinement
network inferring a final, more accurate result.

Being the performance of state-of-the-art confidence esti-
mators still sub-optimal, inspired by the literature reviewed
so far we focus on modelling their uncertainty, in the form
of meta-confidence, to further shrink the gap with optimal
confidence prediction.

III. Meta-confidence framework

In this section, we introduce our framework based on
meta-confidence estimation, used to find wrong confidence
predictions estimated by deep neural networks or random
forest classifiers and then correct them. Figure 2 gives an
overview of our pipeline: while estimating the confidence
for an input disparity map by means of a learned model, we
also infer the uncertainty over such estimated confidence,
i.e., its meta-confidence, and then refine it by means of an
additional neural network.

A. Confidence estimation

Estimating the confidence of each pixel in a disparity map
d = S(l, r), output of a stereo algorithm S processing two
images (l, r), consists into assigning a score encoding the
reliability of such disparity hypothesis, meaning the higher
the more reliable. In most cases, the disparity is estimated
by computation and optimization of a cost-volume C, storing
matching costs C(l, r, i) between each pixel in l and a number
of candidates on r shifted by i along the horizontal scanline,
with i ∈ [0, dmax]. For each pixel, the disparity is assigned
by selecting the minimum cost d = argmini C(l, r, i). To
estimate a confidence map c, a generic function ψ taking
as input (a subset of) the cost volume C, the disparity map
d and the input images (l, r) is defined as c = ψ(l, r, d,C).
According to recent literature, a specific ψ function can
be learned from data and implemented in the form of a
neural network or a random forest [8]. In such a case, the
inferred confidence c will be function of (a subset of) the
aforementioned cues, as well as the set of parameters Φc

of the network or forest such that c = ψ(l, r, d,C; Φc). This
solution proved to be particularly effective with respect to
hand-made functions [8]. Nevertheless, we argue that any
estimator trained to estimate confidence of its prediction is



intrinsically affected by some uncertainty, that can be caused
either by the current observation or the learned model itself.

B. Meta-confidence as model uncertainty

Estimating the uncertainty of confidence offers the possi-
bility to correct the wrong confidence predictions. In general,
the confidence is learned by regression or classification
models [8], and thus there may exist numerous techniques
that estimate the uncertainty of the models themselves, as
exemplified in [46], [20] for other tasks such as optical flow
and monocular depth estimation. In our case, we aim at esti-
mating the uncertainty concerning the predicted confidence.
We refer to this quantity as meta-confidence, since it plays
the role of confidence measure for a confidence measure. In
this section, we show it can be simultaneously learned with
the state-of-the-art deep networks-based models and directly
found for free in existing random forest strategies.

Deep networks – multiple hypotheses. According to the
literature, several strategies exist to model the uncertainty of
deep neural networks [18], [46], [20]. Most of them follow
two main approaches, respectively empirical or predictive.
The empirical approach is perhaps the simplest, usually
implemented by training multiple different models indepen-
dently, for instance by means of dropout [44], boostrapped
ensembles [43] or SGDR [45], such that the mean and
the variance of the distribution can be approximated with
empirical mean and variance of individual model’s predic-
tions [43], [48], [49], but this approach is computationally
infeasible due to multiple forward sampling or ensembles at
test time. According to the predictive approach, we can train
a predictive model to output the parameters of a parametric
model of the distribution [18], which can be optimized by
minimizing their negative log-likelihood. Although effective
at modelling uncertainty, this often comes at the price of a
lower accuracy of the network predictions [18], [19].

To alleviate these limitations, we propose an alternative
way, which benefits from the advantages of two solutions
discussed above. We formulate a multi-headed network for
confidence estimation that yields multiple hypotheses in a
single network. Specifically, we reformulate the confidence
estimator to generate N multiple hypotheses, {c1, ..., cN}. To
train them, existing multiple hypotheses frameworks [46],
[49] optimize each hypothesis separately, while the final loss
is obtained through a per-pixel minimum across all hypothe-
ses, called winner-takes-all (WTA). But we observed that it
is ineffective in our case, because the multiple hypotheses
converge to the same prediction for less complex tasks such
as confidence estimation and thus do not allow to model a
distribution. To overcome this, we instead estimate the mean
µ(c) of multiple hypotheses to jointly train them, defined as

µ(c) =
1
N

N∑
i=1

ci. (1)

The confidence estimation network is then trained by neg-
ative log-likelihood minimization [18], resulting in the fol-

lowing loss function

Lllm =
D (µ(c), c∗)

σ(c)
+ logσ(c), (2)

where D (µ(c), c∗) is a distance function between µ(c) and
ground-truth confidence c∗, which can be mean squared error
(MSE) loss or binary cross entropy (BCE) loss, which is
also widely used as a loss function in existing confidence
measures [26], [30], [31]. The logarithmic term discourages
infinite predictions for uncertainty, that would easily drive
the loss toward zero. Regarding numerical stability [18],
[20], the network is trained to estimated the log-variance
in order to avoid zero values at the denominator. This loss
function encourages the networks to make the confidence
µ(c) close to the ground-truth c∗ while σ(c) can be considered
as uncertainty of µ(c). We will see in our experiments that
estimating µ(c) rather than a single confidence output leads
to better results.

The uncertainty σ(c) can be directly computed as a
variance of multiple hypotheses, as in existing empirical
approach [43], [48], [49], but we argue that it can be more
accurately predicted by an additional neural network, called
uncertainty network, of parameters Φu, that takes multiple
hypotheses as input and output σ(c). To summarize, our
networks predict confidence µ(c) and its uncertainty σ(c)
simultaneously such that {µ(c), σ(c)} = ψ(l, r, d,C; Φc,Φu).
The additional network consists of two sequential convolu-
tion modules, where each convolution module follows the
architecture 3×3 Convolution-BatchNorm-ReLu producing
64 feature maps, followed by 1×1 Convolution-Sigmoid.
For multiple hypotheses as input, we apply the softmax
normalization to handle a scale change.

In addition, for multiple hypotheses, we should choose the
size N. In the experiments, we set the size N = 8, considering
the trade-off between complexity and accuracy.

Random forests – empirical variance. Since the first
attempts to learn a confidence measure were built upon
random forests [50], we also show how to obtain meta-
confidence from these models. In particular, this can be
carried out for free according to their definition.

A random forest consists into a number N of independent
decision trees Tn, with n ∈ [1,N], each one casting an
individual vote Tn(ν) for any given feature vector ν. Once
trained, the forest acts as an ensemble of trees and thus the
final prediction is obtained, in case of a regression problem
as ours, as the mean of the predictions of the trees

µ(ν) =
1
N

N∑
n=1

Tn(ν). (3)

Similarly to what done for bootstrapped ensembles of neural
networks [46], [20], we can compute the empirical variance
over the trees predictions

σ(ν) =
1
N

N∑
n=1

(Tn(ν) − µ(ν))2 . (4)



We will see how this uncertainty, although obtained in an
empirical manner, can be seamlessly used in our framework
to refine the initial confidence.

C. Confidence refinement with meta-confidence

Meta-confidence directly hints that confidence should be
increased if initially low, but with high uncertainty, decreased
otherwise. Similarly to [27], we formulate a module as a deep
neural network, called refinement network, of parameters
Φr to enforce a local consistency of confidence as well
as to refine uncertain confidences. The networks consist
of three sequential convolution modules, where each con-
volution module follows the architecture 3×3 Convolution-
BatchNorm-ReLu producing 64 feature maps, followed by
1×1 Convolution-Sigmoid. We train this network to generate
a final confidence f as f = ψ(µ(c), σ(c); Φr). To train the
network, a refinement loss Lref is computed as Lref =

D ( f , c∗). We will show how, without taking the uncertainty
in input as in [27], the performance gain achieved by f with
respect to c may be marginal.

IV. Experimental results

In this section, we report exhaustive evaluations to assess
the effectiveness of meta-confidence estimation.

A. Evaluation protocol

Confidence evaluation. Analysis of the Area Under Curve
(AUC) [7], [8], [30], [31] represents the standard approach
to evaluate confidence estimators. Pixels in a given disparity
map are sorted in decreasing order of confidence and gradu-
ally sampled (e.g., 5% each time). For each sample, the error
rate is computed as the percentage of pixels having absolute
error larger than τ. A ROC curve is obtained by plotting
the error rate at any sampling, whose AUC quantitatively
assesses the confidence effectiveness (the lower, the better).
Optimal AUC [7] is obtained as a function of the error rate
ε on the whole disparity map:

AUCopt =

∫ ε

1−ε

p − (1 − ε)
p

dp = ε + (1 − ε) ln (1 − ε). (5)

As in [22], we report AUCs ×102 to improve readability.
Refined confidence evaluation. To measure the improve-

ment yielded by our framework based on meta-confidence,
we compute the ∆AUC metric proposed in [27] as

∆AUC =
AUC − AUC f

AUC − AUCopt
(6)

with AUC and AUC f , respectively, AUC by the baseline and
meta-confidence framework averaged over the entire dataset.
We report this score as percentage (%).

B. Implementation details

Confidence networks. Our meta-confidence estimation
framework can be incorporated into any confidence estima-
tor involving deep neural networks-based models. We con-
sider five architectures as backbone networks: CCNN [26],
ConfNet [30], LGC [30], UCN [33], and LAF [31] because
they are clearly the state-of-the-art in literature [8] and the

ConfNet [30] LAF [31]

Configuration Census MCCNN-fst Census MCCNN-fst
Hyp. Uncert. Ref. CBCA SGM CBCA SGM CBCA SGM CBCA SGM

1 7 7 4.28 1.38 2.84 0.94 4.26 1.59 2.85 1.10
N 7 7 4.26 1.36 2.80 0.91 4.23 1.60 2.82 1.03
N var. 7 4.30 1.41 2.83 0.95 4.32 1.61 2.89 1.08

N/2 net. 7 4.08 1.38 2.79 0.93 4.20 1.54 2.79 1.01
N net. 7 4.10 1.35 2.76 0.90 4.11 1.50 2.76 0.99
2N net. 7 4.08 1.36 2.71 0.91 4.09 1.51 2.73 0.98
N 7 3 4.16 1.31 2.78 0.89 4.11 1.49 2.81 1.00
N net. 3 4.03 1.28 2.71 0.86 4.06 1.34 2.64 0.87

Optimal 3.40 0.74 2.16 0.44 3.40 0.74 2.16 0.44

TABLE I. Ablation study on the proposed meta-
confidence estimation and refinement. We report AUC
scores for ConfNet [30] and LAF [31] networks within meta-
confidence framework trained on KITTI 2012 (20 images)
and tested on KITTI 2015.

ConfNet [30] LAF [31]

Census MCCNN-fst Census MCCNN-fst
CBCA SGM CBCA SGM CBCA SGM CBCA SGM

No uncertainty 4.28 1.38 2.84 0.94 4.26 1.59 2.85 1.10
Snapshots [48] 4.26 1.39 2.86 0.97 4.30 1.58 2.87 1.12
Predictive [18] 4.30 1.37 2.88 1.01 4.24 1.55 2.86 1.08
Multi-head [46] 4.28 1.37 2.83 0.99 4.27 1.57 2.84 0.99

Ours 4.03 1.28 2.71 0.86 4.06 1.34 2.64 0.87
Optimal 3.40 0.74 2.16 0.44 3.40 0.74 2.16 0.44

TABLE II. Comparison with existing methods to model
uncertainty. We report AUC scores for ConfNet [30] and
LAF [31] implementing uncertainty modeling using known
methods and our framework, trained on KITTI 2012 (20
images) and tested on KITTI 2015.

source code is fully available. As in [37], we modified
ConfNet to replace deconvolutions with a bilinear upsam-
pling followed by convolutions and process a disparity only.
We trained those backbone networks and proposed uncer-
tainty and refinement networks in an end-to-end manner,
with the proposed loss functions, Lllm and Lref . For CCNN,
we used batches of 128 patches, for ConfNet, UCN, and
LAF, batches of 4, 128×256 crops on inputs, and for LGC,
batches of 128 patches. We trained all networks with ADAM
optimizer and a constant learning rate of 0.003.

Random forest frameworks. For experiments involving
random forest models, we follow the guidelines from the
literature [9], [8], [11], [10], [12], setting the number of
trees to 10, with a maximum depth of 25 nodes each. The
code is implemented in C++ using OpenCV library, this
latter opportunely modified to extract empirical variance.
We consider four forest-based methods among those in the
literature: ENS [21], GCP [23], [51], LEV50 [10] and O2
[12]. We trained the refinement networks using the same
settings described for confidence networks.

Datasets. Following the most recent literature [37], we
consider four standard datasets in our experiments: KITTI
2012 [52], KITTI 2015 [53], Middlebury 2014 at quarter
resolution and ETH3D [54], setting τ respectively to 3,
3, 1 and 1 when computing the error rates. We train the
confidence estimators on the first 20 images from KITTI
2012 [8], evaluating on the remaining 174 images and on
the 200 available from KITTI 2015. Finally, we study the
generalization over unseen content of the models trained on
KITTI 2012 by testing on the Middlebury 2014 and ETH3D
datasets, counting respectively 15 and 27 stereo images.



KITTI 2012 KITTI 2015

Census MCCNN-fst Census MCCNN-fst
Model CBCA SGM CBCA SGM CBCA SGM CBCA SGM

CCNN [26] 5.56 1.71 3.30 1.71 4.32 1.72 3.29 1.96
CCNN-µ 5.55 1.66 2.84 1.38 4.32 1.73 2.91 1.38
CCNN- f 5.33 1.61 2.74 1.04 4.13 1.66 2.80 1.04
∆AUC(%) 27.38 10.87 58.94 45.89 20.65 6.12 43.36 60.53
ConfNet [30] 5.27 1.40 2.73 0.56 4.28 1.38 2.84 0.94
ConfNet-µ 5.22 1.35 2.70 0.51 4.11 1.30 2.77 0.89
ConfNet- f 5.11 1.30 2.64 0.46 4.03 1.28 2.71 0.86
∆AUC(%) 29.09 16.39 23.68 32.26 28.41 15.63 19.12 16.00
LGC [30] 5.13 1.36 2.65 0.55 4.08 1.35 2.74 0.90
LGC-µ 5.12 1.36 2.65 0.43 4.06 1.29 2.73 0.85
LGC- f 5.10 1.34 2.62 0.41 4.02 1.28 2.70 0.84
∆AUC(%) 7.32 3.51 10.00 46.67 8.82 11.48 6.90 13.04
UCN [33] 5.41 1.36 2.79 0.63 4.23 1.53 2.95 1.21
UCN-µ 5.36 1.37 2.73 0.64 4.19 1.50 2.91 1.20
UCN- f 5.24 1.23 2.69 0.57 4.06 1.39 2.80 1.07
∆AUC(%) 24.64 22.81 22.72 15.80 20.48 17.72 18.99 18.18
LAF [31] 5.31 1.37 2.71 0.61 4.26 1.59 2.85 1.10
LAF-µ 5.21 1.36 2.69 0.59 4.20 1.57 2.84 1.08
LAF- f 5.17 1.33 2.63 0.54 4.06 1.34 2.64 0.87
∆AUC(%) 23.73 6.90 22.22 19.44 23.26 29.41 30.43 34.85
Optimal 4.72 0.79 2.35 0.25 3.40 0.74 2.16 0.44

Middlebury 2014 ETH3D

Census MCCNN-fst Census MCCNN-fst
CBCA SGM CBCA SGM CBCA SGM CBCA SGM

10.52 11.54 9.09 8.94 9.02 7.26 15.96 3.99
10.31 11.59 8.18 7.13 10.16 7.27 13.23 3.96
9.09 10.57 7.81 6.20 8.91 7.11 13.11 3.41

27.45 13.92 36.99 45.67 2.22 2.93 50.44 22.48
10.70 9.88 8.08 6.03 10.42 4.20 13.44 3.47
10.73 9.32 7.84 6.53 10.12 3.88 13.17 3.64
10.45 9.34 7.80 6.50 10.07 3.74 13.08 3.44
4.64 10.17 11.43 -15.21 5.51 22.33 11.50 1.46

10.44 9.73 7.79 5.87 11.85 4.73 13.33 3.39
10.88 9.12 7.81 5.87 9.42 4.34 13.36 3.41
10.12 9.01 7.75 5.79 9.24 4.25 13.22 3.33
6.24 13.95 1.85 2.73 33.55 18.53 3.64 1.41
9.16 9.51 8.48 5.86 6.64 5.78 12.86 3.89
9.06 8.67 8.49 5.81 6.30 5.14 12.77 3.58
8.83 8.53 8.31 5.13 6.08 4.80 12.62 3.12
8.57 19.84 5.96 25.00 27.80 26.92 9.41 31.04
9.26 8.94 8.00 5.37 8.06 5.21 13.34 3.98
8.88 8.99 8.02 5.38 7.53 4.94 13.11 3.99
8.67 8.12 7.91 5.21 7.28 4.67 12.98 3.93

14.94 18.76 3.80 6.58 19.55 17.59 11.88 1.95
5.31 4.57 5.63 2.94 4.07 2.14 10.31 1.41

(a) (b)

TABLE III. Results on KITTI 2012 and 2015 (a), Middle-
bury and ETH3D (b) – deep networks. We report AUCs
for deep learning methods, their variants with refinement
network and the ∆AUC(%) achieved by these latter.

Fig. 3. Qualitative results on Middlebury 2014 and
ETH3D datasets. From left: reference image, disparity
by (from top) Census-CBCA, Census-SGM, MCCNN-fst-
CBCA and MCCNN-fst-SGM, confidence, meta-confidence,
and final confidence by UCN [33].

Stereo algorithms. Confidence estimators are traditionally
evaluated over a variety of stereo algorithms [8], [30], [31],
in order to assess their effectiveness when dealing either with
noisy or accurate disparity maps. A standard benchmark in
this field [31], [22] uses four stereo matchers implemented
by Zbontar and LeCun [3]: Census-CBCA, Census-SGM,
MCCNN-fst-CBCA and MCCNN-fst-SGM.

C. Ablation study

We now study the impact of the different components of
our meta-confidence framework and compare it with existing
strategies to model uncertainty [48], [18], [46]. To this aim,
on the KITTI 2012 dataset [52], we trained two confidence
estimation networks, namely ConfNet [30] and LAF [31],
and evaluated several variants on the KITTI 2015 dataset.

In Table I we collect ablation experiments. We first analyze
the results of confidence estimation networks reformulated
as multi-headed networks, showing improvements over the
single output ones. Considering the trade-off between accu-
racy and complexity, we set N = 8, similarly to [46], [20].
When training the networks with Lllm and uncertainty as
variance (var.), the performance is even degraded. Instead,
by employing the uncertainty network in place of variance
(net.), the gain becomes apparent. The trade-off in modeling
uncertainty at the cost of lower accuracy is known in

KITTI 2012 KITTI 2015

Census MCCNN-fst Census MCCNN-fst
Model CBCA SGM CBCA SGM CBCA SGM CBCA SGM

ENS [21] 6.62 1.99 3.53 0.82 5.60 2.18 3.76 1.65
ENS- f 6.16 1.83 3.33 0.77 5.09 1.93 3.48 1.64
∆AUC(%) 24.31 13.19 17.24 8.93 22.89 17.02 17.76 0.83
GCP [23], [51] 6.37 2.17 3.32 1.00 5.29 2.40 3.44 1.91
GCP- f 5.71 1.78 2.96 0.76 4.64 1.84 3.08 1.60
∆AUC(%) 39.97 28.12 37.51 31.27 34.44 33.48 28.41 20.83
LEV50 [10] 5.74 1.54 2.96 0.66 4.51 1.69 3.02 1.14
LEV50- f 5.28 1.38 2.69 0.62 4.12 1.50 2.78 1.04
∆AUC(%) 45.11 20.43 45.05 10.35 34.95 19.04 27.51 14.38
O2 [12] 5.81 1.55 2.93 0.72 4.53 1.66 2.97 1.07
O2- f 5.41 1.51 2.73 0.70 4.25 1.61 2.81 1.05
∆AUC(%) 36.85 4.07 34.43 4.56 24.63 5.16 19.59 2.82

Optimal 4.72 0.79 2.35 0.25 3.40 0.74 2.16 0.44

Middlebury 2014 ETH3D

Census MCCNN-fst Census MCCNN-fst
CBCA SGM CBCA SGM CBCA SGM CBCA SGM

11.15 12.82 9.58 7.94 8.20 7.82 14.48 5.39
10.57 12.51 8.49 7.85 7.74 7.61 13.96 5.27
9.93 3.72 27.68 1.67 10.97 3.67 12.53 2.85

11.18 13.12 9.86 7.53 8.54 6.34 15.69 5.61
11.14 12.20 8.96 6.96 7.96 5.63 14.68 5.00
0.68 10.81 21.32 12.52 13.00 16.73 18.86 14.59

11.57 12.42 8.81 6.70 7.93 7.00 13.69 3.79
10.09 10.87 7.88 6.00 7.04 6.22 12.64 3.39
23.60 19.68 29.17 18.48 23.11 16.01 31.21 16.93
11.06 10.81 8.09 6.24 9.28 8.08 14.91 5.36
10.81 10.71 7.69 6.37 8.57 7.29 15.28 5.22
12.24 1.57 16.53 -4.03 13.72 13.24 -7.82 3.74

5.31 4.57 5.63 2.94 4.07 2.14 10.31 1.41

(a) (b)

TABLE IV. Results on KITTI 2012 and 2015 (a), Middle-
bury and ETH3D (b) – random forests. We report AUCs
for random forest methods, their variants with refinement
network and the ∆AUC(%) achieved by these latter.

literature [5]. However, we have found that learning the
uncertainty by means of a dedicated network processing
the N hypotheses is not affected by this issue, overcoming
a known limitation in literature. In addition, adding more
hypotheses (2N) does not improve the results significantly.
Moreover, the refinement networks slightly improve the per-
formance even without modeling uncertainty (a configuration
that is equivalent to [27]), but marginally. By considering
multiple hypotheses, uncertainty and refinement networks,
our framework achieves the best performance.

Table II shows a comparison between our full framework
with existing methods [48], [18], [46] modelling uncertainty.
We can notice how these latter rarely improve the perfor-
mance of the baseline networks not modelling uncertainty at
all (first row), while our framework consistently outperforms
both baseline and competitors, resulting superior when it
comes to improve the performance of a confidence estimator.

The computational overhead of our full framework with
respect to baseline estimators is negligible – i.e. runtime and
parameters just increase by 3.65% and 9.36% in LAF [31].

D. Meta-confidence framework evaluation

In this section, we compare the performance of state-
of-the-art confidence estimators achieved by their original
formulation and by our refined variants modeling meta-
confidence. Specifically, we report ∆AUC scores highlighting
in green when our formulation yields to improvements (pos-
itive ∆AUC), in red otherwise (negative ∆AUC).

Deep networks. We report the results achieved by state-
of-the-art confidence networks [26], [30], [30], [33], [31]
trained with the meta-confidence estimation and refinement.
Table III (a) shows results on KITTI 2012 and KITTI 2015
datasets. We can notice that each of them outperforms the
performance of the corresponding baseline. In addition, Table
III (b) demonstrates results on Middlebury 2014 and ETH3D
datasets, where in general, the confidence estimator struggles
against domain discrepancy and uncertain predictions may be
dramatically increased. Meta-confidence gives our method a
hint about the regions, and can correct them. Figure 3 shows
some qualitative examples on Middlebury and ETH3D.

Random forests. Moreover, we report results achieved by
random forests frameworks [21], [51], [10], [12] and refined
by our formulation exploiting empirical uncertainty. Table IV



Model K12 K15 Mid ETH

CCNN 3.29 3.93 23.34 7.02
CCNN- f 2.94 3.44 21.68 6.10
∆AUC(%) 12.87 15.91 9.19 15.26

Optimal 0.57 0.85 5.28 0.99

Model K12 K15 Mid ETH

ConfNet 5.46 5.21 22.31 4.69
ConfNet- f 5.10 4.81 19.01 4.14
∆AUC(%) 7.36 9.17 19.38 14.86

Optimal 0.57 0.85 5.28 0.99

Model K12 K15 Mid ETH

LGC 3.53 4.61 22.42 6.31
LGC- f 3.01 4.22 19.07 5.62
∆AUC(%) 17.57 10.37 19.54 12.97

Optimal 0.57 0.85 5.28 0.99

Model K12 K15 Mid ETH

UCN 2.62 3.18 23.31 12.23
UCN- f 2.21 2.97 21.09 9.88
∆AUC(%) 20.00 9.01 12.31 20.91

Optimal 0.57 0.85 5.28 0.99

Model K12 K15 Mid ETH

LAF 1.70 2.58 18.19 7.40
LAF- f 1.51 2.21 16.52 6.31
∆AUC(%) 16.81 21.39 12.94 17.00

Optimal 0.57 0.85 5.28 0.99

Model K12 K15 Mid ETH

ENS 3.18 4.52 18.28 5.58
ENS- f 2.66 3.81 18.84 5.69
∆AUC(%) 20.09 19.18 -4.27 -2.25

Optimal 0.57 0.85 5.28 0.99

Model K12 K15 Mid ETH

GCP 4.19 5.39 21.00 5.24
GCP- f 2.86 4.28 18.82 4.30
∆AUC(%) 36.72 24.50 13.92 20.94

Optimal 0.57 0.85 5.28 0.99

Model K12 K15 Mid ETH

LEV50 1.99 2.87 18.47 4.23
LEV50- f 1.79 2.59 17.49 3.62
∆AUC(%) 15.08 12.56 7.40 17.44

Optimal 0.57 0.85 5.28 0.99

Model K12 K15 Mid ETH

O2 2.76 3.67 22.03 7.10
O2- f 2.56 3.54 21.43 6.25
∆AUC(%) 9.09 4.72 3.58 13.32

Optimal 0.57 0.85 5.28 0.99

TABLE V. Results on GANet disparity maps. We report
AUCs for the nine estimators, their variants with refinement
network and the ∆AUC(%) achieved by these latter.

(a) LEV50 [10] (b) O2 [30]

Fig. 4. Relationship between meta-confidence and confi-
dence. We plot the difference between ROC and optimum
curves (y axis) in log scale, when sampling different percent-
ages of pixels (x axis) according to meta-confidence.

(a) collects results on KITTI 2012 and KITTI 2015 datasets,
showing consistent improvements for any method across the
four stereo matchers. We point out how the gain in terms of
∆AUC is, in general, higher for CBCA matchers while it is
lower, yet consistent, for SGM algorithms.

Considering different domains, Table IV (b) confirms that
our framework also consistently improves the performance
on completely unseen content, with very few exceptions.

Performance with modern stereo network. Finally, as
in [22], we prove that our framework is effective also at
improving confidences estimated for a deep stereo network
such as GANet [55]. Table V collects results for the nine
confidence estimators, again trained on KITTI 2012 and
tested on all the datasets considered so far, confirming that
our meta-confidence framework consistently yields improve-
ments, except for ENS on Middlebury and ETH3D.

E. Analysis

Finally, we show qualitatively how effective the meta-
confidence is at explaining wrong confidence predictions
prior to refinement. To this aim, given a disparity map
we plot a curve result of the difference between the ROC
obtained by confidence sampling and the optimum curve. We
repeat this after removing a percentage of the pixels having
the lowest meta-confidence, in an iterative way similar to
the ROC computation procedure. In Fig. 4 we plot, for
different confidence measures, the difference between ROC
and optimal curves on the entire disparity map (blue) and on
sparse maps after removing 10% (yellow), 25% (green) or
50% (red) least meta-confident pixels, measured on the entire
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Fig. 5. Effects of sparsification according to meta-
confidence (LEV50). By removing pixels with lowest meta-
confidence (top to bottom), correct pixels selection according
to confidence (left to right) is most of the times improved.

KITTI 2015 dataset, using MCCNN-fst-CBCA algorithm.
We can notice how the curves after sampling are, most of
the times, lower than the blue one, hinting a lower gap with
respect to the optimum and suggesting that meta-confident
is a meaningful hint of the confidence errors.

Accordingly, we can exploit confidence and meta-
confidence in an orthogonal manner to select reliable pixels.
Fig. 5 shows how, by removing the least meta-confident
pixels and selecting the most confident one, we are able
to select a subset of pixels containing no outliers (bottom
left), whereas confidence alone cannot. Sampling accuracy
becomes less consistent when sampling higher percentages
of most confident pixels (> 75%). More qualitative examples
are reported in the supplementary video.

V. Conclusion

In this paper we proposed, for the first time, to take into
account the uncertainty of the confidence of a disparity map,
as a second-level confidence or meta-confidence. We have
shown how existing deep learning models for confidence
estimation can be extended to learn the meta-confidence and
to exploit it to predict more reliable and accurate confidence
score. It has been also shown how existing random forest
strategies already allow to retrieve this information for free
and how it can be used to refine the confidence. Experimental
results on a variety of stereo algorithms and confidence es-
timators, including state-of-the-art deep learning models and
random forest-based ones, proved that our meta-confidence
framework is effective in finding incorrect confidence pre-
diction and correcting it.
Acknowledgements. The work was supported by the MSIT,
Korea (IITP-2022-2020-0-01819, ICT Creative Consilience
program), and National Research Foundation of Korea (NRF-
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[3] J. Žbontar and Y. LeCun, “Stereo matching by training a convolutional
neural network to compare image patches,” Journal of Machine
Learning Research, vol. 17, no. 1-32, p. 2, 2016.

[4] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[5] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, “End-to-end learning of geometry and con-
text for deep stereo regression,” in The IEEE International Conference
on Computer Vision (ICCV), Oct 2017.

[6] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” in
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[7] X. Hu and P. Mordohai, “A quantitative evaluation of confidence
measures for stereo vision,” vol. 34, no. 11, pp. 2121–2133, 2012.

[8] M. Poggi, F. Tosi, and S. Mattoccia, “Quantitative evaluation of
confidence measures in a machine learning world,” in ICCV, 2017,
pp. 5228–5237.

[9] M.-G. Park and K.-J. Yoon, “Leveraging stereo matching with
learning-based confidence measures,” in CVPR, 2015, pp. 101–109.

[10] ——, “Learning and selecting confidence measures for robust stereo
matching,” IEEE transactions on pattern analysis and machine intel-
ligence, vol. 41, no. 6, pp. 1397–1411, 2018.

[11] M. Poggi and S. Mattoccia, “Learning a general-purpose confidence
measure based on o (1) features and a smarter aggregation strategy
for semi global matching.” IEEE, 2016, pp. 509–518.

[12] M. Poggi, F. Tosi, and S. Mattoccia, “Learning a confidence measure
in the disparity domain from o (1) features,” Computer Vision and
Image Understanding, vol. 193, p. 102905, 2020.

[13] J. L. Schonberger, S. N. Sinha, and M. Pollefeys, “Learning to
fuse proposals from multiple scanline optimizations in semi-global
matching,” in ECCV, 2018, pp. 739–755.

[14] G. Marin, P. Zanuttigh, and S. Mattoccia, “Reliable fusion of tof and
stereo depth driven by confidence measures,” in European Conference
on Computer Vision. Springer, 2016, pp. 386–401.

[15] M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Con-
fidence estimation for tof and stereo sensors and its application to
depth data fusion,” IEEE Sensors Journal, vol. 20, no. 3, pp. 1411–
1421, 2020.

[16] A. Tonioni, M. Poggi, S. Mattoccia, and L. Di Stefano, “Unsupervised
adaptation for deep stereo,” in The IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[17] ——, “Unsupervised domain adaptation for depth prediction from
images,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2019.

[18] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” in Advances in neural information
processing systems, 2017, pp. 5574–5584.

[19] E. Ilg, T. Saikia, M. Keuper, and T. Brox, “Occlusions, motion and
depth boundaries with a generic network for optical flow, disparity,
or scene flow estimation,” in 15th European Conference on Computer
Vision (ECCV), 2018.

[20] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, “On the uncertainty of
self-supervised monocular depth estimation,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[21] R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for
confidence measures in stereo vision,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2013, pp.
305–312.

[22] M. Poggi, S. Kim, F. Tosi, S. Kim, F. Aleotti, D. Min, K. Sohn, and
S. Mattoccia, “On the confidence of stereo matching in a deep-learning
era: a quantitative evaluation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

[23] A. Spyropoulos, N. Komodakis, and P. Mordohai, “Learning to detect
ground control points for improving the accuracy of stereo matching,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 1621–1628.

[24] S. Kim, D. Min, S. Kim, and K. Sohn, “Feature augmentation for
learning confidence measure in stereo matching,” IEEE Transactions
on Image Processing, vol. 26, no. 12, pp. 6019–6033, 2017.

[25] A. Seki and M. Pollefeys, “Patch based confidence prediction for dense
disparity map.” in BMVC, vol. 2, no. 3, 2016, p. 4.

[26] M. Poggi and S. Mattoccia, “Learning from scratch a confidence
measure.” in BMVC, 2016.

[27] ——, “Learning to predict stereo reliability enforcing local consistency
of confidence maps,” in CVPR, 2017, pp. 2452–2461.

[28] M. Poggi, F. Tosi, and S. Mattoccia, “Even more confident predictions
with deep machine-learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2017, pp.
76–84.

[29] Z. Fu and M. A. Fard, “Learning confidence measures by multi-modal
convolutional neural networks,” in 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE, 2018, pp. 1321–
1330.

[30] F. Tosi, M. Poggi, A. Benincasa, and S. Mattoccia, “Beyond local
reasoning for stereo confidence estimation with deep learning,” in
ECCV, 2018, pp. 319–334.

[31] S. Kim, S. Kim, D. Min, and K. Sohn, “Laf-net: Locally adaptive
fusion networks for stereo confidence estimation,” in The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[32] M. S. K. Gul, M. Bätz, and J. Keinert, “Pixel-wise confidences for
stereo disparities using recurrent neural networks,” in BMVC, 2019.

[33] S. Kim, D. Min, S. Kim, and K. Sohn, “Unified confidence estimation
networks for robust stereo matching,” IEEE Transactions on Image
Processing, vol. 28, no. 3, pp. 1299–1313, 2019.

[34] ——, “Adversarial confidence estimation networks for robust stereo
matching,” IEEE Transactions on Image Processing, 2020.

[35] C. Mostegel, M. Rumpler, F. Fraundorfer, and H. Bischof, “Using
self-contradiction to learn confidence measures in stereo vision,” in
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[36] F. Tosi, M. Poggi, A. Tonioni, L. Di Stefano, and S. Mattoccia,
“Learning confidence measures in the wild,” in BMVC, Sept. 2017.

[37] M. Poggi, F. Aleotti, F. Tosi, G. Zaccaroni, and S. Mattoccia, “Self-
adapting confidence estimation for stereo,” in European Conference
on Computer Vision (ECCV), 2020.

[38] D. J. MacKay, “A practical bayesian framework for backpropagation
networks,” Neural computation, vol. 4, no. 3, pp. 448–472, 1992.

[39] T. Chen, E. Fox, and C. Guestrin, “Stochastic gradient hamiltonian
monte carlo,” in International conference on machine learning, 2014,
pp. 1683–1691.

[40] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient
langevin dynamics,” in Proceedings of the 28th international confer-
ence on machine learning (ICML-11), 2011, pp. 681–688.

[41] A. Graves, “Practical variational inference for neural networks,” in
Advances in neural information processing systems, 2011, pp. 2348–
2356.

[42] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” arXiv preprint arXiv:1505.05424,
2015.

[43] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensembles,” in
Advances in Neural Information Processing Systems, 2017, pp. 6402–
6413.

[44] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, 2016, pp. 1050–1059.

[45] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[46] E. Ilg, O. Cicek, S. Galesso, A. Klein, O. Makansi, F. Hutter, and
T. Brox, “Uncertainty estimates and multi-hypotheses networks for
optical flow,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 652–667.

[47] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using un-
certainty to weight losses for scene geometry and semantics,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7482–7491.



[48] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q.
Weinberger, “Snapshot ensembles: Train 1, get m for free,” in ICLR,
2017.

[49] C. Rupprecht, I. Laina, R. DiPietro, M. Baust, F. Tombari, N. Navab,
and G. D. Hager, “Learning in an uncertain world: Representing
ambiguity through multiple hypotheses,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 3591–3600.

[50] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[51] A. Spyropoulos and P. Mordohai, “Correctness prediction, accuracy
improvement and generalization of stereo matching using supervised
learning,” International Journal of Computer Vision, vol. 118, no. 3,
pp. 300–318, 2016.

[52] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in CVPR, 2012.

[53] M. Menze and A. Geiger, “Object scene flow for autonomous ve-
hicles,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[54] T. Schops, J. L. Schonberger, S. Galliani, T. Sattler, K. Schindler,
M. Pollefeys, and A. Geiger, “A multi-view stereo benchmark with
high-resolution images and multi-camera videos,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 3260–3269.

[55] F. Zhang, V. Prisacariu, R. Yang, and P. H. Torr, “Ga-net: Guided
aggregation net for end-to-end stereo matching,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 185–194.


