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ABSTRACT
In this paper we describe the strategy adopted to design,
from scratch, an embedded RGBD sensor for accurate and
dense depth perception on a low-cost FPGA. This device
infers, at more than 30 Hz, dense depth maps according to
a state-of-the-art stereo vision processing pipeline entirely
mapped into the FPGA without buffering partial results on
external memories. The strategy outlined in this paper en-
ables accurate depth computation with a low latency and a
simple hardware design. On the other hand, it poses ma-
jor constraints to the computing structure of the algorithms
that fit with this simplified architecture and thus, in this
paper, we discuss the solutions devised to overcome these
issues. We report experimental results concerned with prac-
tical application scenarios in which the proposed RGBD sen-
sor provides accurate and real-time depth sensing suited for
the embedded vision domain.

CCS Concepts
•Computer systems organization → Embedded sys-
tems;
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1. INTRODUCTION AND RELATED WORK
RGBD sensors providing monochrome or color image and

accurate dense depth maps, are crucial to improve the ef-
fectiveness of several computer vision applications. This
fact has lead to the development of different technologies,
broadly categorized in active and passive. Active sensors
infer depth data by perturbing the sensed scene according
to different approaches. A representative example of this
category is the Microsoft Kinect 1, a cheap, yet accurate,
device projecting a structured light pattern, by means of
an infrared projector, sensed by an infrared imaging sen-
sor. It enables to infer accurate depth maps and images at
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VGA resolution in indoor environments. Other remarkable
technologies in this category are Time of Flight (ToF) and
LIDAR. These latter devices infer depth by measuring the
time required for sensing a bounced signal (coded light or
laser). RGBD sensors based on active technologies are, in
most cases, quite accurate but have in some circumstances
strong limitations. In fact, they may interfere with each
other, are ill-suited to environments flooded with sunlight
(e.g, ToF and Kinect) and may be cumbersome or with me-
chanical parts (e.g., LIDAR). Devices based on passive tech-
nology have the potential to overcome the before mentioned
issues. Passive stereo vision, in particular, is a well-known
approach [12], based on standard imaging sensors, to infer
depth by identifying corresponding points on two or more
images. In stereo vision the algorithm to deal with the so
called correspondence problem plays a major role in terms of
computational requirements and effectiveness for the over-
all technology. Although it may provide unreliable results
when dealing with ambiguous image patterns (e.g., in poorly
textured regions), compared to active technologies, it is well
suited to indoor and outdoor environments.

Due to the many applications that can take advantage
of pointcloud data provided by a passive sensor, passive
stereo vision is a very active research area [12] and in re-
cent years several improvements have been proposed. In this
field the Semi Global Matching algorithm (SGM) [8] is very
popular due to its accuracy and efficiency. Nevertheless,
due to its demanding computational requirements for real-
time depth sensing, many different computing architectures
(e.g., CPUs, GPUs, DSPs, FPGAs, ASICs, etc.) have been
adopted [17]. Systems based on standard CPUs [4] or GPUs
[1] are typically not well-suited to consumer/embedded ap-
plications due to high power requirements, cost, and size.
Low power and massively parallel devices such as FPGAs
have attracted the interest of many researchers working in
this field in order to obtain optimal performance/Watt. These
devices can be configured by means of hardware description
languages (HDLs), such as VHDL or Verilog, or High Level
Synthesis (HLS) tools. Examples of stereo vision algorithms
mapped into FPGAs are reported in [2, 5, 15, 13, 10, 18,
14].

In this paper we describe the design of an RGBD sensor
based on this technology that relies on a simple and cheap
computing architecture and state-of-the-art visual process-
ing pipeline. Our proposal allows us to obtain accurate and
dense depth maps in real-time with small power consump-
tion, weight and size.
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Figure 1: Left) Main functional components of the
RGBD sensor. - Right) Optionally stackable PCBs.
The stereo head in this configuration has a baseline
of 6.6 cm.

2. ARCHITECTURE OF THE 3D SENSOR
Our design goal was aimed at developing, from scratch, an

effective 3D sensor based on stereo vision technology suited
for embedded applications. In particular, major constraints
in our design were concerned with depth maps accuracy, low
latency, reduced power consumption, low weight and size.
Moreover, we also were interested in a simplified and low cost
hardware design basically made of two imaging sensors, a
low-cost FPGA and a communication controller. To further
simplify the hardware design, we considered the opportu-
nity to avoid external memory devices and, after a thorough
evaluation, we decided to adopt this solution. This yielded
a significant simplification to the hardware design at the ex-
pense, on the other hand, of an increased effort for algorithm
implementation, mostly required to devise solutions suited
to the small memory available inside the FPGA. Regard-
ing the reconfigurable device, we adopted the Spartan 6 LX
family focusing in particular on models 45, 75 and 100. The
main functional components of our hardware design are out-
lined on the left of Figure 1: the stereo head, the modules
implemented into the FPGA and a USB controller (Cypress
FX2). The stereo head is based on two Aptina mt9v034
sensors (monochrome or color, WVGA resolution at 60 fps)
configured in a master-slave setup for synchronized image
acquisition. The processing board is basically made of an
FPGA, on which the processing pipeline has been mapped
into, and an external USB controller to handle communi-
cations with the host computer. The USB connector also
provides power supply to the whole camera, including the
stereo head. In the figure, at the left, we can also notice
an 8 bit RISC micro-controller (referred to as micro), syn-
thesized into the FPGA as a softcore (Picoblaze), in charge
of handling configuration messages between the host and
the RGBD sensor. In Figure 1, at the right, are shown the
two optionally stackable PCBs corresponding to the stereo
head and the computing platform. The weight of the overall
RGBD sensor, with M12 lenses and holders, is about 90 g
and its power consumption is below 2.5 W. The imaging sen-
sors are configured in LVDS mode by means of appropriate
I2C commands. The first module of the processing pipeline

implemented into the FPGA, the deserializer, extracts syn-
chronized stereo pairs from the incoming high-speed LVDS
stream. With a pixel frequency of 24 MHz the LVDS stereo
stream is clocked at 432 MHz (i.e., 18X, in order to encode,
in the same time, 8 + 8 bit for the two pixels plus a start
bit and a stop bit). Of course, the LVDS setup adopted,
compared to a simple parallel transmission, requires a more
complex front-end to extract the image pixels and also leads
to a slightly increased power consumption. On the other
hand, this solution allows us to put the stereo-head up to 5
m from the computing platform and hence enables to better
customize the hardware setup according to specific applica-
tion requirements. Once completed the deserialization phase
within the FPGA, the visual processing pipeline executes the
following tasks before sending the out its outcome to the host
computer via the USB interface; image rectification, census
transform, stereo matching and filtering outliers.

3. HARDWARE DESIGN CONSTRAINTS
The hardware design outlined in the previous section in-

duces major constraints to the computational structure of
the visual processing pipeline. In fact, the whole memory
available for buffering partial results consists of the block-
rams (BRAM), look-up-tables (LUT) and flip-flops (FF)
available inside the FPGA. For instance, the FPGA mod-
els adopted in our design have BRAMs, the largest amount
of memory inside the reconfigurable logic, of about 300 KB.
Therefore it would not be enough to store an entire frame at
VGA resolution (about 300 KB). Moreover, another issue is
concerned with image rectification that requires, for undis-
tortion tables, an additional amount of memory multiple of
the image size. Finally, a further problem related to the
missing external memory is concerned with frame buffering
that, for the same reasons outlined before, is not enough to
handle the whole output of the visual processing pipeline
(e.g, 16 bit disparity map, left and right original or rectified
stereo pair). For each of the issues highlighted so far we
have adopted appropriate methodologies, described in the
next sections , aimed at obtaining a good trade-off between
hardware resources and depth sensing accuracy.

4. VISUAL PROCESSING PIPELINE
In this section we describe how each module of the visual

processing pipeline, depicted in Figure 1, has been mapped
into the FPGA. Each one, excluding the deserializer and the
USB front-end implemented in VHDL, has been coded in C
using HLS tools available in the Xilinx Vivado environment.
Moreover, the processing modules are interconnected with
small FIFOs synthesized into the FPGA. Excluding the de-
serializer and the USB front-end, the modules are clocked
at the 24 MHz pixel frequency. In our implementation we
deeply adopted the on-the-fly methodology [11], for process-
ing and buffering, in order to minimize as much as possible
memory requirements.

4.1 Image rectification
The stereo stream is warped, according to the calibration

parameters to obtain a stereo pair in standard form with
epipolar lines aligned to the image scanlines. The conven-
tional approach for warping each image point (x, y) consists
in reading from the undistortion table the floating-point co-
ordinate (x′, y′) required for bilinear interpolation. A first
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Figure 2: Image warping with highlighted points in-
volved in bilinear interpolations.

issue in this method consists in the floating-point computa-
tion that, on FPGAs, can be very demanding in terms of
logic resources. To deal with this problem we adopt fixed-
point arithmetic. Another issue is concerned with timing
constraints dictated to access the 4 pixels involved in the bi-
linear interpolation from the distorted image. We tackle this
problem by means of interleaving storing adjacent points on
different BRAMs. Moreover, we adopt a circular buffer to
store into the BRAMs the minimum amount of scanlines
required for buffering distorted images incoming from the
imaging sensors. Nevertheless, the other, and major, issue
is concerned with the size of the undistortion tables that,
as previously outlined, does not fit with the overall mem-
ory available within the FPGA. To deal with this problem
we sub-sample the original undistortion tables, as depicted
in Figure 2, with a strategy inspired by [7]. That is, start-
ing from each point of the undistorted image, we locate the
four closest points in the corresponding sub-sampled distor-
tion table, stored in four different BRAMs, and compute, by
means of bilinear interpolation with fixed-point arithmetic,
the location (x′, y′) in the distorted image shown at the left
of the figure. Once obtained (x′, y′) we read the four closest
image pixels, again stored on four different BRAMs, and per-
form a bilinear interpolation, by means of fixed-point arith-
metic, to obtain the undistorted pixel value at coordinate
(x, y). This strategy yields to a significant reduction of the
original undistortion tables (by a factor S2, where S is the
sub-sampling factor), that become compatible, selecting the
appropriate S parameter, with the memory resources avail-
able inside the FPGA. Despite the described simplifications,
with standard lenses and appropriate parameters it does not
impact significantly stereo correspondence even with algo-
rithms that rely on point-wise matching costs. Moreover,
if correctly implemented, it perfectly fits with the resources
available inside the FPGA.

Finally we observe that although the adopted strategy
based on equidistant sampling of the rectification tables pro-
vides a compression factor compatible with the logic re-
sources, an approach based on a non-equidistant strategy,
currently under evaluation, might further improve the over-
all compression factor.

4.2 Census transform
The two rectified images are then processed by census

modules to robustly emphasize their content before the stereo
correspondence phase. The census transform, proposed in
[19], is a non-parametric local image transform. It consid-
ers the relative ordering of nearby pixels intensity wrt the
one under examination and is robust to strong radiometric
distortions that typically occur in practical application sce-
narios as reported in [9]. For this reason and for its particu-
larly hardware-friendly computational structure, it is widely

Figure 3: Left) - pixels involved in the census trans-
form. - Right) Eight scanlines deployed by the orig-
inal SGM algorithm and, in green, those involved in
our implementation to reduce memory requirements
and latency.

adopted in many stereo vision systems. Despite its effective-
ness, the census transform in its basic formulation becomes
unreliable in regions with a reduced signal to noise ratio and,
for this reason, we implemented a filter that allows to dis-
card disparity values computed in such regions. A methodol-
ogy to improve the effectiveness of the original census trans-
form [19] consists in using a ternary value, as proposed in
[16]. However, this strategy would increase the hardware
resources and, for this reason, it has not been adopted in
the current implementation. Figure 3, at the left, shows
the five pixels involved in our implementation of the census
transform. The adopted 4 bit census transform, compared
to the original 8 bit approach, provides sufficient cues to
the stereo correspondence algorithm to reliably detect ho-
mologous points. Moreover, our strategy reduces hardware
complexity for Hamming distance computation and buffer-
ing requirements for partial results. As for any other module
of the visual processing pipeline, exploits on-the-fly strategy
for input, output and processing.

4.3 Stereo matching
According to [12], stereo correspondence algorithms can

be broadly classified in local and global approaches. Al-
though in recent years local algorithms have significantly
improved their performance, global approaches are generally
more effective, in particular in ambiguous regions character-
ized by low signal to noise ratio. In fact, these methods,
by enforcing a smoothness constraint to the resulting dis-
parity map can deal with such regions by means of a global
reasoning approach aimed at minimizing, on the whole im-
age/disparity domain, the energy function (1) made of two
components: the matching cost or likelihood term EL and
the smoothness term ES .

E(D) = EL(D) + ES(D) (1)

The likelihood term, computed point-wisely or aggregat-
ing matching costs, encodes how well the input stereo pair
fits with the disparity hypotheses. The smoothness term
penalizes disparity changes within nearby points. Unfortu-
nately, when the nearby points considered to evaluate the
smoothness term belong to a 2D domain, minimization of
(1) is a N (p) hard problem and its approximate solution
requires iterative methodologies such as graph-cut or belief-
propagation. These latter approaches are not suited for our
computing architecture and in general, in their original for-
mulation, for most FPGA-based computing architectures.
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Table 1: RMSE concerned with horizontal (left) and vertical (right) distortion displacements for different
sampling factors S (2, 4, 8, 16 and 32) and number of bits (1,2,3 and 4) for fixed-point arithmetic

1 2 3 4
S=2 0.168965, 0.161948 0.089465, 0.090001 0.046934, 0.047659 0.023989, 0.024062
S=4 0.211688, 0.208164 0.113027, 0.114550 0.059024, 0.059682 0.030469, 0.030555
S=8 0.245530, 0.248436 0.129072, 0.132286 0.066510, 0.067980 0.033493, 0.034363
S=16 0.267847, 0.276945 0.136280, 0.140552 0.070684, 0.073966 0.039621, 0.039676
S=32 0.282557, 0.297991 0.156523, 0.158604 0.110491, 0.100273 0.102517, 0.076500

However, when the smoothness term is computed on a 1D
domain, minimization of (1) can be carried out, very effi-
ciently, in polynomial time by means of scanline-optimization
(SO) approach [12]. Starting from this observation, in [8]
was proposed an efficient method for accurate stereo match-
ing that exploits multiple and independent SO computation.
In its original formulation, on each of the 8 scanlines shown
in Figure 3, SGM minimizes (1) using as penalty term ES for
smoothing; 0 for disparity hypothesis equal to the disparity
found in the previous point along the scanline, P1 (greater
than 0) when the disparity hypothesis differs of ± 1 and P2
(greater than P1) when it differs more than ± 1. The en-
ergy term E, computed independently on each scanline are
summed and on the aggregated energy term the minimum
value is determined according to a winner-take-all strategy.
Unfortunately, the SGM approach is demanding in terms of
memory requirements and certainly not suited for our com-
puting architecture. Moreover, it requires to scan the entire
image domain from top to bottom and vice-versa increasing
latency. Although implementation of the original SGM algo-
rithm on FPGA-based architectures are feasible as reported,
for instance in [5], this requires and external memory device
with enough bandwidth to sustain back and forth high speed
transfers of large amounts of partial computations.

Our strategy consists in a memory efficient approach that
considers the 4 out of 8 scanlines depicted, in green, at the
right of Figure 3. A similar strategy, as reported in [2], sig-
nificantly reduces memory issues at the expense of a slight
reduction in accuracy. In our implementation, the matching
cost EL is the aggregated Hamming distance computed on
3× 3 patches of the census transformed images. Along each
scanline, the 11 bit costs E computed for the previous pixel,
are stored in different BRAMs to allow parallel access. The
computed costs E are then added, in parallel, for the whole
disparity range and the overall minimum value is determined
in parallel. It is worth to point-out that our pipeline cur-
rently works at pixel frequency and hence we do not take
advantage of pipelined computations at higher frequency.

4.4 Filtering
The disparity map is further processed, by the filtering

module depicted in Figure 1, to remove outliers as well as
to improve accuracy. Specifically, this filter includes the
following modules:

• Low-texture - We process the reference rectified stereo
pair with an horizontal Sobel filter computed on a 3×3
patch to determine the local degree of texture and se-
lectively discard disparity values according to a thresh-
old parameter.

• Uniqueness constraint - When the uniqueness constraint
is violated, we keep the disparity value of the point

in the reference image with the best score and dis-
card the other colliding disparity value [3]. This strat-
egy turns out to be effective to detect occluded points
and, compared to the traditional left-right consistency
constraint, provides similar results [3] with a smaller
memory footprint.

• Median filtering - It removes small inconsistencies be-
tween nearby pixels (3× 3 patch) in the disparity map
without introducing new disparity values.

• Subpixel refinement - It determines, by fitting a parabola
in proximity of the minimum cost, the subpixel dispar-
ity refinement that in the current implementation is 1

8
.

The outcome of the visual processing pipeline consists of
the 16 bit disparity map, the rectified stereo pair and, op-
tionally, the original stereo pair. Unfortunately the USB
controller adopted in the current prototype does not have
enough bandwidth to transmit such data at the same rate
of the visual processing pipeline. However, the USB con-
troller enables to transmit 3 images (e.g., rectified stereo
pair and 16 bit disparity map) at about 22 fps. Another
issue, related to image transmission, is concerned with the
missing frame buffer. In fact, being not available a conven-
tional frame buffer to store the outcome of processing, we
transmit this data by means of a packet-based strategy that
encodes on the same USB stream images and disparity maps
with minimal buffering requirements.

5. EXPERIMENTAL RESULTS
In this section we report results concerned with the pro-

posed RGBD sensor. Specifically, we analyze in detail the
behavior of the simplified rectification process compatible
with our constrained computing architecture, report the out-
put of the proposed raw processing pipeline on realistic im-
age datasets, provide implementation reports on different
FPGA models and briefly report results regarding two em-
bedded vision applications that rely on our RGBD sensor
for accurate and dense depth measurements in real-time.

As previously pointed out, a traditional rectification ap-
proach based on full distortion tables would not be compati-
ble due to memory limitations with our computing architec-
ture. For this reason we have adopted a simplified approach
based on regularly sub-sampled distortion tables that en-
tirely fit within BRAMs and fixed-point arithmetic to reduce
logic resources. In Tables 1 we report for horizontal and ver-
tical undistortion displacements the root mean square error
(RMSE) between groundtruth data, computed according to
OpenCV calibration functions, and the outcome of the sim-
plified rectification process changing the sub-sampling fac-
tor S (row) and the number of bits deployed for fixed-point
arithmetic. The focal length is 3.8 mm. Observing the table
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Figure 4: Raw disparity maps computed on a stereo
pair of the Kitti dataset (Top) and on a stereo pair
acquired with our stereo-head (Bottom).

we can notice that the RMSE is always below 0.3 pixel even
in the worst case (sub-sampling factor 32 and 1 bit for fixed-
point arithmetic computations). With a reasonable trade-off
between accuracy and memory/resource, sub-sampling fac-
tor 16 and 4 bit for fixed-point, the RMSE drops below 0.04
pixel. Hence, and as also confirmed by our evaluation in dif-
ferent application scenarios, the simplified strategy does not
perturb significantly disparity map computation. Moreover,
it makes manageable the undistortion parameters within the
FPGA. In fact, compared to the standard approach based on
full undistortion tables, in our setup, the amount of elements
is reduced by a factor S = 162 that, considering images at
VGA resolution (640), means that the amount of required
elements drops from 307200 to 1200. This latter values is
fully compatible with the internal memory resources of most
FPGAs and certainly with our target Spartan 6 devices.

Table 2 compares the raw results of the proposed hardware-
friendly version of the SGM algorithm with [14] and [18],
according to the metric defined in [14], on two images of the
Middlebury dataset [12]. We can notice a significantly lower
average error with respect to [14] and [18]. In figures 4 we
report, at the top, the raw disparity maps computed with
a stereo pair of the KITTI [6] dataset and, at the bottom,
with a stereo pair acquired with our camera. Observing
these maps, we can notice that, in both cases, the proposed
approach allows to infer quite accurately the 3D structure
of the sensed scene. The results reported in the figure do
not include the filtering module that is particularly effec-
tive to remove outliers. In Figure 5, we report the output of

Table 2: Average errors, computed according to [14]
on non-occluded points, for Teddy and Cones [12].

Ref. [14] Ref. [18] Proposed
cones 29.2 17.1 2.74
teddy 26.8 21.5 2.90

Figure 5: Two practical and real-time applications
of the proposed 3D sensor. Top, 3D people tracking
(RGBD sensor configured at 640 × 480 resolution).
Bottom, a wearable mobility aid for the visually im-
paired (RGBD sensor configured at 320 × 240 reso-
lution).

two embedded applications that rely on the proposed RGBD
sensor for depth sensing. At the top of the figure, results re-
garding a 3D people tracking system and, at the bottom,
results concerned with a wearable mobility aid for the vi-
sually impaired that detects and categorizes obstacles by
processing the 3D data provided by our RGBD sensor. The
results reported in the figure include the filtering module
that effectively removes most outliers and occlusions.

Figure 6 reports, for the proposed stereo matching module
only, the implementation results on three different Spartan
6 models (45, 75 and 100) for a constant disparity range of
32. Focusing the attention on the 75 model, we can notice
that the stereo matching module requires 38 % BRAMs, 9
% Flip-Flops and 50 % of LUTs leaving a significant amount
of resources for the other, and less demanding modules, in-
cluded in the processing pipeline. In this specific imple-
mentation, as already pointed-out, our processing pipeline
is clocked at the same frequency of the incoming pixels.

Our RGBD sensor, processing at 30+ Hz stereo pairs with
a disparity range of 32 at VGA resolution has an overall
power requirement (provided by the USB cable) below 2.5
W. When used wit an embedded CPU board such as the
Odroid U3, the overall power consumption is about 5 W,
comparable to the solution proposed in [10]. The overall
weight of RGBD sensor with M12 lenses and holders is about
90 g and hence suited for application domains, such as those
involving UAVs/drones and wearable devices, where weight,
size and power consumption are major concerns.

6. CONCLUSIONS
In this paper we have described the architecture of a cus-

tom RGBD sensor based on passive stereo technology and
its visual processing pipeline self-contained into a single and
low-cost FPGA. Although the simplified hardware design
proposed, compared to more complex solutions, has several
advantages (costs, power consumption, weight and size) the
implementation of a processing pipeline for accurate dense
depth measurements required a significant effort aimed at
determining the best trade-off between accuracy and logic
resources. The results of this work is a compact, lightweight
and accurate RGBD sensor capable of processing stereo pairs
at 30+ Hz at VGA resolution and with small energy require-
ments compatible with the constrained power supply pro-
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Figure 6: Resources required by the proposed SGM module, with a fixed disparity range of 32, on three
Xilinx Spartan 6 models (45, 75 and 100).

vided by the USB 2 standard. Experimental results confirm
the effectiveness of our proposal.
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