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ABSTRACT
Thank to the widespread di↵usion of RGBD sensing devices
based on active technologies, in recent years, many research
and industrial applications have taken advantage of reliable
cues computed from dense depth data. However, although
these sensors can be very e↵ective in many circumstances,
they are not always well suited for outdoor environments
and can also interfere with each other when sensing the
same area. On the other hand, traditional systems based
on passive stereo vision technology, due to their computa-
tional/energy requirements, reliability, size, cost etc, have
been, so far, mostly confined to research projects. Never-
theless, recent advances in computation architectures and
algorithms enable to overcome most of these issues and, in
this paper, we describe the architecture and the processing
pipeline of an e↵ective RGBD sensor based on stereo vision
suited for real time applications. This sensor allows us to in-
fer, in indoor and outdoor environments, dense and accurate
depth maps computed according to state-of-art algorithms
and with minimal energy requirements that fit with typical
constraints of smart camera systems.
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1. INTRODUCTION
Accurate and (sometimes) inexpensive depth sensors have

greatly increased the interest for 3D vision in recent years
and this fact has lead to the development of very interesting
applications. Most of these sensors provide dense depth map
and images of the sensed environment and for this reason
they are often referred to as RGBD (RGB + Depth) sensors.

Most of these sensors rely on active technologies that, by
perturbing the sensed environment, allow to infer depth.
The Kinect is certainly the most popular sensor belonging to
this class. It relies on a infrared (IR) structured light pattern
projected into the sensed scene and a patented algorithm
that, by analyzing how this pattern appears in the scene,
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allows to infer depth. This device also includes a rolling
shutter color image sensor at VGA resolution (640 ⇥ 480)
tuned on the visible spectrum.

Although not so widespread di↵used as the Kinect, an-
other interesting active 3D sensing technology is time of
flight (TOF). This technology projects into the sensed scene
a coded invisible pattern and infers depth measuring the
time required by the pattern for bouncing from the emitter
to the receiver. In most cases TOF sensors provide also an
image (often monochrome) of the sensed scene and, for this
reason, these devices belong to the class of RGBD sensors.

Finally, another active technology based on elapsed time
required by a signal for bouncing from the transmitter to
the receiver is LIDAR. In this case the signal consists of a
laser pulse. Devices based on this technology, are however
typically cumbersome, expensive and with moving mechan-
ical parts. Moreover, they do not natively provide an image
of the sensed scene and, although frequently deployed in dif-
ferent conditions, they are more suited for static scenes. On
the other hand, compared to sensors based on structured
light or TOF, LIDARs are perfectly suited to outdoor appli-
cations where other active technologies, in particular under
sunlight, would be very noisy (e.g., TOF) or completely use-
less(e.g., Kinect).

A di↵erent well known passive RGBD technology, purely
based on imaging devices, is stereo vision. This technol-
ogy infers depth by triangulating corresponding (or homol-
ogous) points projected from the sensed scene to, at least,
two imaging sensors with known relative position in space
(i.e., extrinsic parameters) and known internal camera pa-
rameters (i.e., intrinsic parameters). Compared to other
3D sensing technologies, stereo vision is passive, although
pattern projection can be used to improve its e↵ectiveness
in determining corresponding points. This enables simulta-
neous sensing of the same area with multiple stereo vision
sensors. Moreover, this RGBD technology is well suited for
indoor as well as for outdoor environments. Despite these
positive aspects, stereo vision is computationally demand-
ing and for this reason has been considered for a long time
not suited for smart cameras. In fact, the typical comput-
ing platforms, such as high end CPUs and GPUs, that allow
for inferring dense depth map in real time have high energy
requirements (and size).

However, as we’ll show in this paper, modern FPGAs en-
able to design very compact, lightweight and e↵ective depth
sensors based on stereo vision technology that fit with the
constrained energy requirements of typical smart camera
systems. Compared to most existing stereo cameras with
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FPGA processing, our proposal allows us to obtain accurate
and dense depth maps according to a processing pipeline self
contained into a low cost FPGA.

2. RELATED WORK
Among the technologies aimed at inferring depth, stereo

vision is probably the most dated. Early attempts to tackle
this problem were proposed in the 60s and since then many
approaches aimed at solving the correspondence problem have
been proposed. An exhaustive review and evaluation of sig-
nificant approaches proposed in this field was proposed in
[14]. A more recent review of this area, focused on comput-
ing architectures suited for real-time stereo vision systems,
was proposed in [15].

Compared to most other 3D sensing technologies, in stereo
the key component, excluding the imaging system, is the
algorithm that determines homologous points. It, starting
from two rectified stereo pairs [14], aims at detecting ho-
mologous point by searching for each point of the reference
image (e.g., left) the corresponding point in the target image
(e.g., right) within a prefixed disparity range.

The correspondence problem remains very challenging due
to many pitfalls (e.g., occlusions and other artifacts that may
appear in the scene or in the images). The outcome of this
algorithm is an image, referred to as disparity map, that
encodes information concerned with the distance between
each scene point and the camera.

Di↵erent algorithms for stereo correspondence enable dif-
ferent degrees of accuracy in depth perception and often re-
sults also in very di↵erent computational requirements and
memory footprint. According to the taxonomy proposed in
[14] most stereo correspondence algorithms can be divided
in two broad classes: local and global.

Local algorithms have a simple computational structure
and determine, independently for each point in the reference
image, the supposed corresponding point in the target image
by evaluating the best score, computed according to certain
cost functions aggregated within patches (in most cases) cen-
tered on the examined points. A review and an evaluation
of cost functions frequently used in practical stereo vision
systems can be found in [9]. Although the computational
structure outlined for local algorithms intrinsically exposes
a high degree of parallelism, on the other hand, this means
that these algorithms explicitly do not enforce constraints
on the depth map. From the computational point of view
this class of algorithms has, in most cases, a very limited
memory footprint. This fact is crucial when dealing with
architectures with limited resources such as that considered
in our project. A local algorithms based on a simple, yet ro-
bust, cost aggregation strategy is fixed window [10, 19] that
we mapped into our computing architecture. Hardware im-
plementations based on more sophisticated cost aggregation
strategies inspired by [17] were proposed in [4], in [3] using
the mini-census transform and a simplified and computa-
tionally e�cient cost aggregation strategy, and in [16] using
image segmentation as main cue for matching cost aggrega-
tion.

On the contrary, global algorithms explicitly enforce on
the disparity map a 2D smoothness constraint. These algo-
rithms tackle the correspondence problem as a labeling as-
signments that minimize an energy function with two terms
that evaluate how well the disparity assignment fits with
data (i.e., the input images) and the smoothness constraint.

Typically, in these algorithms, the disparity assignment that
minimize the energy function is obtained by means of itera-
tive optimization approaches [14] such as belief propagation
or graph-cuts. Unfortunately, these techniques have very
high memory footprints and very high memory bandwidth
requirements.

Since our target computing platform has constrained re-
sources, especially in terms of available memory, global al-
gorithms seem not well suited for our purposes. However, in
the latter class falls also algorithms based on simplified en-
ergy minimization methodologies that enforce a smoothness
constraint on 1D domains. These algorithms are typically
based on dynamic programming or scanline optimization [14]
techniques. In particular, an algorithm based on multiple
independent scanline optimization that, thanks to its e�-
ciency and e↵ectiveness, has become very popular in recent
years is the SGM approach [8]. It determines corresponding
points by combining the cost provided by multiple instances
(8 or 16 in [8]) of independent scanline optimizations com-
puted along di↵erent converging paths. When considering
architectures with constrained resources, such as those based
on FPGAs, this method has some major drawbacks. In fact,
it requires to scan the stereo pair from top to bottom and in
the opposite direction (this requires storing of the whole in-
put images). Moreover, it has a high memory footprint and
high memory bandwidth requirements. Despite this fact, it
can be implemented in FPGAs as reported in [5] and [1].
The implementation proposed in [5] is very similar to the
original formulation and allows for processing stereo pairs
at 320 ⇥ 400 while the implementation proposed in [1] is a
simplified approach aimed at reducing memory bandwidth
at the expense of a small reduction in terms of overall accu-
racy. Both implementations rely on high end FPGAs.

In the next sections we provide a description of the ar-
chitecture of our 3D camera and of its processing pipeline
entirely mapped on a low cost FPGA that, in the configu-
ration reported in this paper, consists of a Xilinx Spartan
6 Model 75. Our processing pipeline can be easily config-
ured on the field with two algorithms, fixed window and our
memory e�cient version of the SGM approach [8].

3. OVERVIEW OF THE FPGA-BASED COM-
PUTING ARCHITECTURE

As previously outlined, a major goal in our work was
aimed at designing a compact, lightweight and energy ef-
ficient RGBD sensor enabling accurate depth sensing based
on stereo vision. After a thorough evaluation of di↵erent
strategies, we found that a good trade-o↵ between hard-
ware complexity and depth map accuracy could be obtained
by deploying a memoryless computing architecture based on
low cost FPGA. This choice allowed us to design a very sim-
ple processing board (essentially made of an FPGA and a
communication controller) that, for the current prototype,
is compliant to USB 2.0. This means that the overall pro-
cessing pipeline is self-contained into the FPGA, as shown in
Figure 1, with notable advantages in terms of design com-
plexity, costs, size, power consumption and portability to
other computing platforms with similar architecture.

On the other hand, our design strategy also enforces ma-
jor constraints to the vision algorithms that can be mapped
on it. In particular, the main constraint is concerned with
memory, available only inside the FPGA. To give an idea,
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Figure 1: Main functional blocks of the proposed
stereo camera design. The 3D camera is connected
and powered by the host via USB.

the overall memory available on low cost FPGAs, such as
those target of our design, has a size comparable to hun-
dreds of KB. This value, is often smaller than the ⇡ 300 KB
required to encode a single monochrome image at VGA res-
olution (i.e., 640 ⇥ 480). For this reason, we applied to each
implemented module the on-the-fly processing methodology
in order to reduce as much as possible bu↵er requirements
[12].

Another major constraint arising with the proposed com-
puting architecture is concerned with frame bu↵ering. In
our design, as previously highlighted, there is not enough
memory to store a single image and thus we can’t put the
outcome of the processing pipeline into a frame bu↵er. For
this reason, in our design we stream data to the USB con-
troller adopting, again, an on-the-fly approach that relies
only on a small bu↵er, of few kilobytes, synthesized into the
FPGA logic. It is worth observing that, since in most cases
we are interested in streaming more than a single image (e.g.,
the rectified reference image, the disparity map and the map
encoding subpixel values), we designed an e↵ective module
that allows us to combine more images into a single video
stream. This module enables to reliably transmit multiple
images using the same endpoint of the USB controller and
hence allows us to avoid a physical external frame bu↵er.

Figure 1 outlines the main functional blocks of our 3D
camera implemented on the reconfigurable FPGA logic (in
light gray). In the figure we can observe a front-end that
converts the input video streams provided by the two imag-
ing sensors and the processing pipeline made of: filtering and
rectification module, stereo correspondence module and out-
liers detection and subpixel interpolation module. Although
not explicitly reported in the figure, a small FIFO aimed at
handling small latency during USB transfers is synthesized
into the FPGA. The figure also highlights a softcore, synthe-
sized on the reconfigurable logic, that handles all the com-
munications (excluding those involving the video streams
processed by the vision pipeline) with the host computer.
The proposed hardware design also allows to obtain power
supply from the same USB connector used for data. The
overall power consumption processing stereo pairs at more
than 30 fps and at 640 ⇥ 480 resolution is about 2 Watt
with a Xilinx Spartan 6 Model 75. Unfortunately, the USB
2.0 bandwidth does not allow streaming at 30+ fps of three
images (encoding the rectified reference image, the disparity

map and the subpixel measurements) at 640⇥ 480. In these
circumstances, with the USB 2.0 interface, the three images
are internally processed at more than 30 fps but they are
actually acquired at about 22 fps by the host computer due
to USB bandwidth constraints. In the figure, outside the
FPGA, we can see the a single notable device included in
our design; a Cypress FX2 USB 2.0 controller aimed at man-
aging all the communication between the 3D camera and the
host.

4. PROCESSING PIPELINE
In this section we describe the main processing modules

of the stereo camera implemented into the FPGA logic. All
the modules are connected by means of small FIFOs syn-
thesized into the reconfigurable device and, excluding the
input of sensor front end and the output of the USB front
end, they receive the same pixel clock. The maximum fre-
quency allowed by the sensors used for our experiments is
27 MHz.

4.1 Sensor front end
This module converts the 18 bit, 16 data bits plus a start

bit and a stop bit, serial LVDS stereo video stream sent by
the imaging sensors into two distinct 8 bit parallel video
streams containing the synchronized images sensed by the
camera. Once completed this phase, the pixel frequency of
the converted video stream is reduced by a factor 18 and sent
to the processing pipeline. The deserialization described is
implemented into the FPGA logic and does not a↵ect the
quality of the images. The resulting pixel clock of the par-
allel encoded video stream is upper bounded by the maxi-
mum frequency of the sensors that in our specific case is 27
MHz (for original serial LVDS video stream the maximum
frequency is 486 MHz).

4.2 Filtering and rectification
This module receives the two deserialized video stream

and performs a sequence of operations required by the stereo
correspondence module. The filtering and rectification mod-
ule may include a pre-processing operation (e.g. smoothing)
aimed at reducing the image noise. However, its main task
consists in warping the input video streams according to the
parameters determined by the calibration phase. This phase
is crucial for the successive processing modules in order to
obtain images with epipolar lines aligned to the same image
scanlines. This fact, given a certain point in the reference
image, enables to restrict the the position of the correspond-
ing point on the same scanline of the target image. In our
architecture image warping is carried out by means of a bi-
linear interpolation of distorted input pixels selected and
weighted according to parameters computed by processing
a data structure containing only sparse target coordinates.
This strategy allows us to obtain good accuracy with a min-
imal overhead in terms of logic resources and memory re-
quirements. Of course this strategy requires bu↵ering, on
the internal FPGA memory, of a certain number of scanlines.
The amount of scanlines is related to the maximum image
distortion computed during o↵-line calibration. Once com-
pleted image warping of the two video streams, the filtering
and rectification module can optionally compute additional
image filtering operations such as Laplacian of Gaussian,
edge detection/enhancement, etc. In our current implemen-
tation, we apply to the warped images a variant of the census
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transform [18] that, by considering the relative ordering of
pixel intensity, is robust [9] with respect to strong radiomet-
ric distortions.

4.3 Stereo correspondence algorithms
The stereo correspondence algorithm aimed at solving the

correspondence problem is the core component of the stereo
camera and we implemented two distinct algorithms: the
fixed window approach and a memory e�cient version of
the SGM algorithm.

The fixed window approach can be implemented on the
reconfigurable logic without any modification with respect
to its software counterpart by means of appropriate strate-
gies aimed at reducing redundant calculations as well as at
limiting bu↵er requirements. By following these guidelines
our implementation perfectly fits with the limited resources
available into our design.

Concerning the SGM algorithm [8], as previously high-
lighted this algorithm has a very high memory footprint and
also very high requirements in terms of memory bandwidth.
Since in our design we decided to avoid at all external mem-
ories, in its original formulation this method wouldn’t be
implementable on such a computing architecture. However,
by including for cost computation a restricted number of
scanlines enables to significantly reduce, at the expense of
a small degradation in terms of accuracy, the overall mem-
ory requirements for storing intermediate cost computation.
This fact, coupled with other methodologies aimed at fur-
ther reducing memory requirements, allowed us to match
the constrained resources available in our design.

4.4 Outliers detection and subpixel interpola-
tion

Once computed the disparity map, we validate each value
according to two constraints. The first one is concerned with
the amount of texture detected in proximity of the examined
point in the reference image. Since the census transform is
not reliable in uniformly textured areas we mark as unre-
liable those disparities that have an insu�cient amount of
texture in their corresponding position of the reference im-
age. For this purpose, we evaluate the image texture accord-
ing to the amount of image gradients detected in proximity
of the examined point. Although other approaches, such as
ternary census, would certainly improve the e↵ectiveness of
the original census transform they also would lead to signif-
icantly increased hardware requirements.

We also perform a further validation of the computed
disparity value by enforcing the uniqueness constraint. Fi-
nally, the outliers detection and subpixel interpolation mod-
ule, performs subpixel disparity interpolation by fitting a
parabola according to the matching costs computed in prox-
imity of the best score found by the stereo correspondence
module. In the setup reported in this paper, subpixel inter-
polation is performed at 1

8

of pixel but other configurations
can be implemented for specific application requirements.

4.5 USB front end
The USB front end is aimed at providing a minimal bu↵er-

ing for the processed images before they are sent to the
USB communication controller. This module, consists of
a small FIFO, synthesized in the FPGA, that enables to
deal with small latency in the USB communication channel.

This module also combines multiple video streams in order
to use a single endpoint for all the images/maps.

Of course, the USB front end is also responsible for han-
dling any communication between the stereo camera and
the host. This task is accomplished with the supervision of
the softcore, synthesized into the FPGA logic, depicted in
Figure 1.

5. EXPERIMENTAL RESULTS
In order to prove the e↵ectiveness of our 3D camera in

challenging scenarios, in this section we provide experimen-
tal results concerned with three practical applications that
rely on the dense and accurate depth measurements provided
by our 3D camera. Specifically, we report experimental re-
sults in three very di↵erent applications (obstacle detection,
3D people tracking and 3D SLAM) with three di↵erent con-
figurations of the camera.

5.1 Obstacle detection for robot navigation
This application aims at detecting obstacles in front of a

robot in order to enable autonomous navigation, path plan-
ning and so on. In this case the setup consists of the pro-
posed 3D camera connected to an embedded board Odroid
U3 [6] based on the ARM SoC, model Exynos 4412, a quad
core Cortex A9 CPU clocked at 1.7 GHz, with the Linux
operating system. By means of a robust RANSAC based
approach applied to the v-disparity histogram [11] computed
according to the dense disparity maps provided by the down-
ward looking 3D camera, the algorithm implemented on the
ARM board detects the ground plane at each new frame and
highlights obstacle in sensed area.

Figure 2 shows four frames concerned with an urban sce-
nario. In this specific case, a person simulates the robot
by walking on a narrow sidewalk. The processing pipeline
in this experiment is configured with our implementation of
the SGM algorithm, monochrome sensor with image resolu-
tion set to 320 ⇥ 240 in order to reduce the computational
requirements for the Odroid platform and a stereo baseline
of about 6 cm. Observing the figure we can notice that,
in the four frames reported, the 3D camera enables to ob-
tain very accurate and robust depth maps (encoded with
warmer colors for points closer to the camera). In the fig-
ure, dark blue points represent point marked as unreliable
by the outliers detection module of the processing pipeline
mapped into the the FPGA. The figure shows that the 3D
camera enables to infer smooth, accurate and dense depth
maps of the sidewalk and of the surrounding areas (cars on
the left side and small walls and shrubs on the right side).
The person with the shopping bags approaching the camera
is correctly sensed by the camera in all the three reported
frames. Dark blue points are concerned with potentially un-
reliable regions corresponding to untextured areas in the ref-
erence images that are correctly highlighted by the outliers
detection module. The accurate dense depth maps inferred
by the camera allow to obtain a robust ground plane detec-
tion as shown, in white, in the rightmost picture of Figure 2.
In this case we detect potential obstacles (i.e., a minimum
amount of pixel not belonging to the ground plane) in the
sensed squared area highlighted in white in the rightmost
images. Green means no obstacles while red means obstacle
detected (in this latter case we provide the distance from
the closest sensed obstacle).
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Figure 2: Four frames concerned with a robust
and real time obstacle detection algorithm for au-
tonomous robot navigation based on the dense depth
data provided by the camera. For each frame: (Left)
The reference image (Middle) The disparity map
computed by the stereo camera (warmer colors en-
code points closer to the 3D camera, in dark blue
those points marked as unreliable by the camera)
(Right) In white the detected ground plane. The
obstacles are detected within the square window:
green means no obstacles while red means obstacle
detected.

The overall algorithm, thank to the 3D camera front-end
with FPGA processing, runs at more than 15 Hz on the
Odroid U3 platform in the reported configuration. More-
over, the overall weight of reported system (3D camera with
lenses plus the Odroid) is less than 150 g and the overall
power consumption less than 10 Watt (the camera accounts
only for about 2 Watt). For these reasons, this guiding sys-
tem is well suited also for small, self-powered robots as tested
during an extensive evaluation in indoor and outdoor envi-
ronments.

5.2 3D people tracking
Another interesting application of the proposed sensing

device is concerned with a 3D people tracking system with
downward looking camera. The algorithm proposed to tackle
this problem relies on a bird-eye view projection ([7, 13]),
shown at the bottom of Figure 3, of the point cloud inferred
by the stereo camera and on the meanshift algorithm for
tracking.

Figure 3 shows, on top, five consecutive frames of the ref-
erence image concerned with a sequence used for testing the
3D tracking system in outdoor. In the middle of the figure
are reported the corresponding disparity maps computed by
the 3D camera encoded with grayscale values: brighter val-
ues encode closer points, black encodes points filtered by
the occlusion detection module. Finally, the bottom of the
figure shows the outcome of 3D people tracking on a vir-
tual ground plane. The 3D camera in this experiment is
configured with our implementation of the SGM algorithm,
monochrome sensors configured at 640 ⇥ 480 image resolu-

Figure 3: Reliable and real time 3D people track-
ing. The figure shows five consecutive frames con-
cerned with a 3D people tracking application. (Top)
The reference image (Middle) The disparity maps
computed by the 3D sensor (encoded with grayscale
levels, brighter means closer and black means points
marked as unreliable by the camera) (Bottom) Out-
come of tracking in the sensed area.

tion and a baseline of 6 cm. Focusing our attention on the
disparity maps, we can notice that the 3D camera provides
very accurate and dense depth measurements. The shape
of the two people sensed by the sensor is correctly inferred
and the camera provides, even at higher resolution wrt the
setup described in the previous section, accurate, smooth
and dense maps for the background as well. The outliers
detection module implemented in the processing pipeline
correctly and consistently filters out occlusions (mostly cor-
responding to points on the right side of the two people) and
the uniform bright region, at the bottom left of the reference
image. There are only few small outliers corresponding to
some points in the upper side of the background. Thank
to the accurate and reliable depth maps inferred by the 3D
camera and the tracking algorithm, as shown at the bottom
of the figure, turns out to be very e↵ective, even when peo-
ple get very close, and fast (in the described setup it runs
at about 20 Hz on a Pentium notebook).

5.3 3D SLAM
Finally, in this section we report preliminary experimental

results regarding a 3D simultaneous localization and map-
ping (SLAM) system aimed at obtaining a registered point
cloud of an environment framed, from unconstrained posi-
tions, by the 3D camera. This system relies on 2D features
extracted from the reference image and on dense depth maps
inferred by the 3D camera. The 2D features, extracted in
this experiment by means of the SURF [2] approach, are
matched between adjacent views in order to detect corre-
sponding points. Reliable matched points are then projected
into the 3D space, according to the depth map inferred by
the 3D camera, in order to estimate the pose of the camera
by means of the SVD approach. The computed pose is used
as initial guess for a variant (i.e., point to plane) of the the
ICP algorithm. This refined pose enables to add the current
3D points to the the global point cloud obtained by previous
registrations. Although our current SLAM pipeline imple-
mented in software is not yet ready for real time, by process-
ing according to the approach outlined the point cloud in-
ferred by the 3D camera, it yields promising results as shown
in Figure 4 concerned with 3D scanning of an o�ce room.
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Figure 4: Preliminary 3D registration of an indoor
environment using SLAM techniques. The regis-
tered point cloud shown in this figure was obtained
by processing the images and the depth maps, com-
puted according to our hardware implementation of
the fixed window approach, provided by the 3D sen-
sor during unconstrained movements.

The results reported in the figure outline that our camera is
also suited for 3D fine reconstructions based on image and
depth cues. In fact, observing the figure we can notice that,
despite the limitations of the current SLAM pipeline imple-
mented, the 3D structure of the scene is correctly inferred.
Nevertheless, outliers and drifts in the registration can be
observed in the figure. In these experiments, the camera
is configured with the fixed-window algorithm, monochrome
imaging sensors at 640 ⇥ 480 and a baseline of about 6 cm.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have described the motivations behind

the design of a computing architecture based on a low cost
FPGA and the processing pipeline of a 3D camera enabling
real time, accurate and dense depth measurements accord-
ing to state-of-the-art stereo vision algorithms. The result-
ing compact and lightweight device enables to process color
or monochrome stereo pairs sensed by global shutter imag-
ing sensors. The optimized hardware design and algorithms
implementation allowed us to obtain a small and compact
3D camera with a reduced power consumption of about 2
Watt at 640 ⇥ 480. These facts make this device well suited
for smart camera systems as reported in the experimental
results concerned with three practical applications (in three
di↵erent configurations of the device) where the 3D camera
is e↵ectively being used. Future work is aimed at implement-
ing into the same FPGA board used for depth computation
algorithms for feature detection and description, in particu-
lar those based on binary descriptors.
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