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Abstract

Recent local stereo matching algorithms based on an
adaptive-weight strategy achieve accuracy similar to global
approaches. One of the major problems of these algorithms
is that they are computationally expensive and this complex-
ity increases proportionally to the window size. This paper
proposes a novel cost aggregation step with complexity in-
dependent of the window size (i.e. O(1)) that outperforms
state-of-the-art O(1) methods. Moreover, compared to other
O(1) approaches, our method does not rely on integral his-
tograms enabling aggregation using colour images instead
of grayscale ones. Finally, to improve the results of the pro-
posed algorithm a disparity refinement pipeline is also pro-
posed. The overall algorithm produces results comparable
to those of state-of-the-art stereo matching algorithms.

1. Introduction
Dense stereo matching algorithms aim at determining

correspondences in two or more images of the same scene
taken from different viewpoints. This topic was exhaus-
tively reviewed in [17] and [19]. According to both, most
stereo algorithms can be categorized in two major classes:
local methods and global methods. Local approaches use
information within a finite region around the pixel whose
disparity is being computed. Global approaches incorporate
explicit smoothness assumptions and determine all dispari-
ties simultaneously by applying energy minimization tech-
niques.

Traditional local stereo matching algorithms are typi-
cally faster than global approaches and have a lower mem-
ory footprint. However, they also have reduced accuracy
compared to global state-of-the-art algorithms. Recent lo-
cal algorithms based on adaptive-weight [6, 22] produce
similar results to those obtained using global optimization
techniques. Unfortunately, the computational complexity
of this type of local algorithms is high, and is quadratically
related to the window size used to aggregate the matching
costs. Recently, two similar solutions have been proposed

that render the computation complexity independent of the
size of the aggregation window [7, 23] (also referred as O(1)
complexity). However, the proposed methods have some
limitations (i.e. aggregation can only be performed using
grayscale images) and they have significantly reduced accu-
racy compared to state-of-the-art adaptive-weight methods
arising from the asymmetric nature of the aggregation strat-
egy (i.e. only the reference image information is used for
aggregating costs).

This paper proposes a novel O(1) costs aggregation strat-
egy that thanks to its symmetric nature outperforms state-
of-the-art O(1) costs aggregation methods. Moreover, com-
pared to previous O(1) solutions, our proposal relies on a
completely different approach that allows to aggregate costs
using colour input stereo pairs (previous O(1) solutions
aggregate costs using grayscale images because of mem-
ory footprint limitations). The symmetric and colour-based
O(1) aggregation strategy proposed not only outperforms
state-of-the-art O(1) algorithms, but it also produces results
comparable to non-O(1) adaptive-weight stereo matching
[22]. Thanks to the O(1) nature of our algorithm, when
the size of the input stereo pair grows, our method enables
a dramatic improvement in execution time compared to
adaptive-weight stereo matching. Finally, we also propose a
pipeline that combines two disparity refinement techniques,
that allows to obtain results comparable to top-performing
stereo matching algorithms.

The rest of this paper is organized as follows. In Section
2, we review state-of-the-art O(1) cost aggregation strate-
gies and other non-O(1) methods based on the adaptive-
weight strategy. In Section 3 we present our novel constant
time aggregation strategy and in Section 4 the overall al-
gorithm proposed in this paper is described. We report ex-
perimental results in Section 5 and we draw conclusions in
Section 6.

2. Related work
In this Section we split the review of state-of-the-

art stereo matching algorithms in non-O(1) and O(1) ap-
proaches.



2.1. Non­O(1) cost aggregation strategies based on
adaptive­weights

Traditional local stereo matching algorithms produce
less accurate results compared to global ones. This gap
has been reduced [18, 19] by recent local stereo algorithms
[2, 21]. Even if the idea of aggregating costs using adapt-
ing weights for each pixel had been studied in several pub-
lications [8, 14], it was in [22] where Yoon and Kweon
proposed the adaptive-weight aggregation method which
clearly outperformed previous local stereo matching algo-
rithms. It consists in aggregating costs over a fixed-size
window (35 × 35 in [22]), where each pixel adds its cost
to the total cost of the window with a different weight. The
weight encodes the likelihood that each pixel q belongs to
the same object than the central pixel of the window p. The
pixel weight depends on two values: the colour difference
and the distance between this pixel and the central pixel of
the window. The weight is higher for pixels of a colour
similar to the central one as well as for pixels closer to the
central one. The colour difference (∆cpq) is computed as
the Euclidean distance between the values in the CIELab
colour space of pixel p and pixel q. The distance (∆gpq) is
computed as the spatial Euclidean distance between pixel p
and pixel q. Two constants, γc and γp, respectively, are used
to modulate the relative relevance of ∆cpq and ∆gpq . The
weight, w, assigned to the cost of pixel q when the disparity
of pixel p is being computed is expressed as

w(p, q) = exp

(
−
(
∆cpq
γc

+
∆gpq
γp

))
(1)

During the aggregation step, the weights computed for
the pixels in the reference window and the pixels in the tar-
get window are combined (symmetric aggregation). Then
the dissimilarity within a square window, E, between the
pixels p and pd can be expressed as

E(p, pd) =

∑
qϵNp,qdϵNpd

w(p, q)w(pd, qd)e(q, qd)∑
qϵNp,qdϵNpd

w(p, q)w(pd, qd)
(2)

where pd and qd are the corresponding pixels in the target
image when the pixels p and q in the reference image have
a disparity value of d, Np and Npd

are the aggregation win-
dows, and e(q, qd) represents the pixel-based raw matching
cost of q and qd.

One of the main disadvantages of adaptive-weight ag-
gregation is that it is computationally expensive. More-
over, as it was mentioned in Section 1, computation time
is quadratically related to the window size. Several authors
have proposed faster local methods inspired by the adaptive-
weight algorithm. Gong et al. [2] proposed two modifica-
tions to the original adaptive-weight algorithm. First, they
only use the weight term obtained using the target image.

Second, a two-pass 1D algorithm is implemented instead
of using a 2D square window for aggregation. Richardt et
al. [16] recently proposed a new real-time local stereo al-
gorithm based on the adaptive-weight method. They use
a dual-cross-bilateral grid for costs aggregation, an exten-
sion of the bilateral grid used to speedup bilateral filter-
ing [12]. However, the results of both algorithms [2, 16]
are less accurate than those of the adaptive-weight algo-
rithm [22]. Fast Bilateral Stereo [11] is an algorithm that
combines the efficiency of integral images, deployed by
traditional correlative approaches, with an adapting-weight
strategy applied on a block basis. Compared to the origi-
nal adaptive-weight algorithm, the execution time is signif-
icantly reduced with comparable results.

All the techniques described in the previous paragraph
are faster than the adaptive-weight algorithm. However, the
execution time of these techniques still depends on the ag-
gregation window size.

2.2. O(1) cost aggregation strategies

Ju and Kang [7] propose an alternative O(1) implementa-
tion of adaptive-weight aggregation. They use integral his-
tograms to render the computation time independent of the
size of the aggregation window using an approach inspired
by Porikli’s O(1) technique [13]. Ju and Kang [7] define the
integral histogram Hd

(I,I)
(px, py, i) for the difference image

with disparity d between the grayscale versions of reference
image I and target image I as

Hd
(I,I)

(px, py, i) = Hd
(I,I)

(px − 1, py, i)

+Hd
(I,I)

(px, py − 1, i)

−Hd
(I,I)

(px − 1, py − 1, i)

+
∣∣I(px, py)− I(px − d, py)

∣∣ (3)

where the point p is represented by its coordinates px and
py . i represents all the possible bins of the integral his-
togram.

To obtain not only a constant time algorithm but also
a faster algorithm than the original adaptive-weight algo-
rithm, Ju and Kang [7] perform some simplifications. First,
only the weights in the reference image are used. Second,
grayscale input images are used for costs aggregation in-
stead of colour ones due to memory footprint constraints
[7]. Finally, spatial filtering is performed separately from
the colour filtering. According to the definition of the in-
tegral histogram and the simplifications previously men-
tioned, the constant time aggregation [7] can be expressed
as

E(p, pd) =

∑N−1
i=0 w(p, i)Hd

(I,I)
(p, i)∑N−1

i=0 w(p, i)
(4)



where N is the number of bins of the histogram and w(p, i)
is the resulting weight of comparing the value of the pixel
p and the value of the bin i. It can be observed in (4) that
aggregation is performed using the values of the histogram
instead of the input stereo pair. This is the reason why the
computation complexity of the algorithm is independent of
the window size.

Recently, Zhang et al. [23] proposed a new structure, the
joint integral histogram (JIH) , that accelerates weighted fil-
tering and adaptive-weight stereo matching. Apart from this
new structure, the proposed algorithm is similar to the pre-
viously described O(1) algorithm [7]. Finally, we report that
in parallel to our activity, Rhemann et al. [15] developed an
asymmetric aggregation strategy based on a similar linear
model.

3. Proposed linear stereo aggregation step

In this Section we describe our O(1) aggregation step
that, differently by other O(1) approaches does not rely on
the Porikli’s method [13]. For stereo matching algorithms,
it is desirable that the edges of the input stereo pair of im-
ages are preserved during costs aggregation, as it is made in
the adaptive-weight algorithms, where pixels with different
colour values are aggregated with a low weight (1). Local
linear models have been proven useful in image filtering [4],
image matting [9], image super-resolution [24], and haze re-
moval [3]. In these models, each pixel p of the output image
O is supposed to be linearly related to the same pixel p of
the input image I in a window Nq centered at the pixel q

Op = aqIp + bq,∀pϵNq, (5)

where aq and bq are constant parameters in each window
Nq. This linear relationship ensures the conservation of
edges between the input and the output image [4]. To model
this behavior, in our linear stereo algorithm, the aggregated
cost E is linearly related to the input stereo pair composed
of the reference image I and the target image I as

E(p, pd) = aq

[
I(p)T

I(pd)
T

]
+ bq (6)

where I(p) and I(pd) are intensity values if the algorithm
is being applied to grayscale images or RGB components if
the algorithm is being applied to colour images, aq is a 2×1
or a 6×1 vector (depending on whether the input stereo pair
contains grayscale or colour information, respectively) and
E(p, pd) and bq are scalars.

Minimizing the difference between the input and the out-
put of the linear model, the coefficients of the model are de-
termined. According to [4] the parameters can be expressed
as

aq = (Σq + ϵU)
−1 1

|N |
∑
pϵNq

[
I(p)I(pd)

]
e(p, pd)− µqeq

 (7)

bq = eq − aTq µq (8)

where Σq is the 2 × 2 or 6 × 6 covariance matrix of the[
I(p)I(pd)

]
vector in Nq and U is a 2 × 2 or 6 × 6 iden-

tity matrix. µq is the 2 × 1 or 6 × 1 mean vector of the[
I(p)I(pd)

]
vector in Nq. eq is the mean of e in Nq. |N | is

the number of pixels in Nq. ϵ is a regularization parameter
preventing aq from being too large. ϵ has a similar effect to
σc in the adaptive-weight algorithm [22]. The larger the ϵ
value, the stronger the filtering effect on edges.

After applying this linear model to the entire input stereo
pair, a pixel p is involved in all the windows Nq that contain
p. In other words, the aggregated cost of each pixel is mod-
eled by |N | different aq and bq values. Once computed all
the aq and bq values, we average them within Nq. After this
final modification, the proposed stereo linear model can be
expressed as

E(p, pd) =
1

|N |
∑

q∋pϵNq

(aq

[
I(p)T

I(pd)
T

]
+ bq)

= ap

[
I(p)T

I(pd)
T

]
+ bp (9)

The behavior of the proposed aggregation algorithm can
be explained using Equations (7) and (8). In fact, in highly
textured regions, the value of the aq parameter is close to
1 and bq tends to 0 (i.e. no filtering is performed). In low
texture regions, aq = 0 and bq = eq (i.e. our linear model
computes a simple square window averaging).

As it was previously mentioned in this paper, Equation
(9) used for costs aggregation, was inspired by guided fil-
tering [4]. Similarly, as pointed out in [19, 22], the idea
behind the adaptive-weight aggregation strategy [22] was
related to bilateral filtering [20]. In fact, our proposal and
the adaptive-weight technique aim to average costs only in
regions with similar colours.

It is worth noting that all the window-based computa-
tions described in this Section can be computed in constant
time by means of the integral image method [1]. As a con-
sequence, the computation time of the linear stereo aggre-
gation stage is independent of the size of the window.

4. Stereo matching algorithm
4.1. Disparity computation and disparity selection

In Section 3 a novel O(1) costs aggregation step for
stereo matching was proposed. According to [17] and [19]
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Figure 1. Structure of the proposed linear stereo algorithm and the disparity refinement pipeline

most dense stereo algorithms perform four steps: (a) costs
computation, (b) costs aggregation, (c) disparity optimiza-
tion and (d) disparity refinement. In this Subsection, we
present steps (a) and (c), that combined with the linear
stereo aggregation step described in Section 3 result in our
overall proposed stereo matching algorithm.

For what concerns costs computation (a), two different
measures are deployed in this paper: Absolute Difference
(AD) and Hierarchical Mutual Information (HMI) [5]. In
the case of colour images, AD is expressed as

e(q, qd) =
∑

cϵ{r,g,b}

|Ic(q)− Ic(qd)| (10)

where I is the intensity value of pixel p in the reference
image and I is the intensity value of pixel pd in the tar-
get image. HMI is a matching measure defined from the
entropy of two images (their information content). It is a
more robust measure against radiometric distortion that AD
[5]. The reader can find a detailed description of HMI in
[5].

For what concerns disparity optimization (c), we use the
simple winner-takes-all strategy (WTA). We obtain subpixel
accuracy by fitting a parabola to the direct neighbors of the
best disparity found [5].

4.2. Disparity refinement

In this paper, as depicted in Figure 1, we also propose
a novel combination of two existing disparity refinement
techniques [5] and [10]. The combination of these two tech-
niques allows us to remove large errors and to enforce local
consistency in the disparity results.

The intensity consistent (IC) disparity selection tech-
nique proposed in [5] (Section 2.5.2), relies on segmen-
tation and is particularly effective to solve the problem of
propagation of disparities from textured foregrounds to un-
textured backgrounds as well as to assign disparities to
large untextured regions, one of the major problems of local
stereo matching algorithms.

The locally consistent (LC) disparity selection technique
[10], by enforcing local consistency between neighboring
points, has proven to be effective in recovering wrong dis-
parity assignments in uniform regions as well near depth
discontinuities. Nevertheless, this technique is unable to re-
cover from large erroneous areas (i.e. the erroneous patches
typically caused by homogeneous regions in the stereo

pair). Therefore, we propose a disparity refinement pipeline
in which the resulting disparity maps of linear stereo are re-
fined with method [5] to solve large erroneous areas, and
then refined enforcing local consistency by means of [10].

A detailed description of these two disparity refinement
techniques can be found in [5] and [10].

5. Experimental results
5.1. Accuracy comparison

In this Subsection we evaluate the performance of our
proposal and the performance of constant time O(1) stereo
matching [7, 23] and adaptive-weight stereo matching [22]
according to the metric used in the Middlebury ranking [18]
and in [17]. For the three algorithms we use our own C im-
plementation. The parameters of the three algorithms are
chosen according to an optimization process aiming at ob-
taining the minimum average percentage of erroneous pix-
els in the tested stereo dataset. In this Section we perform
three different tests. The first uses colour stereo pairs for
costs computation and grayscale stereo pairs for costs ag-
gregation (the reason of this choice if the aforementioned
intrinsic limitation of the constant time algorithms proposed
by [7, 23], which due to memory limitations cannot be ex-
ecuted on colour images). In this case, the three algorithms
are referred as G-LinearS, G-ConsT and G-AdaptW. The
second test evaluates the performance of linear stereo and
adaptive-weight with simple pre and post-processing tech-
niques on colour stereo pairs (both for costs computation
and costs aggregation). In this test, algorithms are referred
as LinearS and AdaptW (we do not evaluate ConstT in this
experiment because, as it was previously mentioned, it can-
not be executed on colour images due to a very large mem-
ory footprint). Finally we perform a third test in which the
algorithms in the second test are refined with the IC and LC
techniques described in Subsection 4.2. Those algorithms
are referred as P-LinearS and P-AdaptW.

The Middlebury stereo evaluation website ([18]) pro-
vides a standard way to evaluate the accuracy of the recon-
struction by the percentage of bad pixels in the computa-
tion of four disparity maps using four stereo pairs named
Tsukuba, Venus, Teddy and Cones (see Figure 3). In fact,
it is the implicit benchmark for stereo matching algorithms,
as most papers evaluate their results according to these four
stereo pairs.



Table 1. Performance comparison of aggregation methods using colour images for costs computation and grayscale images for costs
aggregation and no pre or post-processing.

Average
Algorithm Tsukuba Venus Teddy Cones percent of

bad pixels
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

G-AdaptW 3.94 5.83 16.0 1.73 3.31 11.2 11.2 20.2 22.5 5.83 16.0 13.7 10.9
G-LinearS 3.93 5.74 15.4 3.23 4.78 22.1 12.2 21.1 25.5 4.35 14.8 11.3 12.0
G-ConsT 5.70 7.18 23.2 4.77 6.15 25.5 13.7 22.3 28.8 6.68 16.0 17.0 14.8

Table 2. Performance comparison of aggregation methods using colour images for costs computation and costs aggregation, pre and post-
processing.

Average
Algorithm Tsukuba Venus Teddy Cones percent of

bad pixels
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

AdaptW 3.46 4.06 8.90 0.92 1.49 8.67 7.53 14.1 17.2 2.55 8.03 7.24 7.01
LinearS 3.63 4.39 9.61 2.10 2.81 17.0 9.14 15.5 21.1 2.84 8.53 8.15 8.73

P-AdaptW 1.62 2.09 5.78 0.18 0.36 2.16 6.37 11.6 14.9 2.87 8.80 7.14 5.33
P-LinearS 1.10 1.67 5.92 0.53 0.89 5.71 6.69 12.0 15.9 2.60 8.44 6.71 5.68
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Figure 2. Execution time of the studied algorithms on the Teddy stereo pair using: (a) grayscale images and (b) colour images for aggrega-
tion.

We have evaluated constant time O(1) stereo matching
according to the Middlebury benchmark and compared it
with linear stereo and adaptive-weight. For a fair compari-
son, we use the same experimental setup used in the papers
[7, 23]: no pre or post-processing is implemented, colour
stereo pairs are used for costs computation (AD matching
metric), grayscale stereo pairs are used in the aggregation
stage since the computation of the constant time algorithm
using colour images requires a very large amount of mem-
ory that is not available in today’s computers [7]. The opti-
mal set of parameter values used in this test is 35×35 aggre-
gation window with γp = 10 and γc = 20 for G-AdaptW,
35 × 35 aggregation window with γc = 9 for G-ConsT
and ϵ = 10−2.75 and r = 10 for G-LinearS. Under these
circumstances, the results of G-ConsT [7, 23], G-AdaptW
[22] and the proposed G-LinearS are reported in Table 1.
Table 1 reports that G-AdaptW and G-LinearS outperform

on the whole dataset G-ConsT. This can be explained ob-
serving that the constant time algorithm computes weights
asymmetrically deploying only the reference image. On the
other end, linear stereo and adaptive-weight deploy the ref-
erence and the target image. Table 1 also reports that the
performance of linear stereo performance is not as good as
adaptive-weight on grayscale images with AD. Although
the overall performance of G-AdaptW is better than G-
LinearS, our proposal outperforms G-AdaptW in 6 out of
12 cases.

In Figure 2a, the execution time of G-AdaptW, G-
LinearS and G-ConsT on the Teddy stereo pair is repre-
sented versus the window size. Execution time measure-
ments were performed on a Intel Core 2 6420 processor us-
ing only one core. It can be observed that the proposed G-
LinearS algorithm is much faster than G-AdaptW and also
it outperforms G-ConstT in terms of execution time. As



proposed in [23], G-ConsT could be speeded up by quan-
tizing the grayscale levels used for aggregation. However,
according to the results presented in [23], the accuracy of
the algorithm would further decrease, being a much less ac-
curate algorithm than G-AdaptW or G-LinearS.

In order to provide a more detailed comparison of linear
stereo and adaptive-weight, we evaluate their performance
according to the Middlebury benchmark using colour im-
ages both for costs computation and costs aggregation.
Experimentally we found that for both algorithms pre-
processing the input images with a 5 × 5 bilateral filter
[20] with parameters σc = 10 and σs = 10 only for costs
aggregation provides optimal results. Moreover we post-
process the resulting disparity maps of both algorithms ap-
plying cross-checking, a 3 × 3 median filtering to the re-
sulting disparity maps and eliminating constant disparity
blobs smaller than 80 pixels. The disparities in these in-
validated areas are filled in with the content of the first non-
invalidated pixel to the left or to the right (according to the
nature of the occlusion). For both algorithms we use the
optimal set of parameters empirically found, 35×35 aggre-
gation window with γp = 26 and γc = 6 for AdaptW and
ϵ = 10−4 and r = 9 for LinearS. HMI with σ = 1 is imple-
mented for costs computation, as it produces better results
than AD. Table 2 reports the experimental results for linear
stereo (LinearS) and adaptive-weight (AdaptW) according
to this setup. The resulting disparity maps are shown in
Figure 4.

Table 2 shows that AdaptW produces slightly better re-
sults than LinearS. However, we can observe more signifi-
cant differences on the discontinuity regions of Venus and
Teddy. Despite this small difference, it is worth noting that
the complexity of the costs aggregation step of linear stereo
is independent of the window size. According to Figure 2b
LinearS outperforms AdaptW in terms of execution time.
Moreover, this advantage grows when the size of the sup-
port is increased.

To test the effectiveness of the disparity refinement tech-
nique proposed in Section 4.2, we perform a third experi-
ment with LinearS and AdaptW implemented as described
previously in this paper, deploying the disparity refinement
step. These algorithms are referred as P-LinearS and P-
AdaptW. For IC, the parameter values proposed in [5] are
used. For LC, the chosen values are a 39 × 39 window
with γs = 22, γc = 23, γm = 5 and T = 60 for P-
LinearS and a 39 × 39 window with γs = 13, γc = 35,
γm = 8 and T = 50 for P-AdaptW. The results of these
algorithms can be found in Table 2. The resulting disparity
maps are reported in Figure 5. Comparing the non refined
(LinearS and AdaptW) and the refined (P-LinearS and P-
AdaptW) versions of the algorithms, the results are notably
improved showing that the disparity refinement pipeline is
very effective. The disparity refinement pipeline is more ef-

fective for the LinearS algorithm, since we can observe that
the results of P-LinearS and P-AdaptW are very similar (P-
LinearS even outperforms P-AdaptW in 5 out of 12 results).

Observing the overall results, the proposed P-LinearS
method has results comparable to state-of-the-art algo-
rithms according to the Middlebury ranking [18] 1. The
complete proposed pipeline is composed of a local stereo
matching algorithm whose execution time is independent
of the size of the window (15 seconds for Tsukuba and 94
seconds for Teddy) and a disparity refinement step based
on the intensity consistent technique (IC) [5] (which runs in
10 second on Tsukuba and 30 seconds on Teddy) and the
locally consistent technique (LC) [10] (which takes 8 sec-
onds for Tsukuba and 20 seconds for Teddy). Execution
time has been measured in our own implementation of both
methods. However, both techniques as well as the proposed
linear cost aggregation method could be implemented much
more efficiently.

5.2. Scalability

The time measurements described in the previous Sub-
section are associated to the execution of algorithms us-
ing the Middlebury stereo pairs. The most time consuming
stereo pairs in the Middlebury dataset are Teddy and Cones
(450×375 resolution and 60 possible disparities). How-
ever, these two stereo pairs were obtained downsampling
the original 1800×1500 images (240 disparities). Although
the Middlebury benchmark uses relatively low resolution
images, images of larger size are already quite common
nowadays. When the resolution of the input stereo pairs
is increased, the size of the aggregation window must be in-
creased accordingly using the same scale factor. As a con-
sequence, the use of O(1) aggregation techniques becomes
even more advantageous. In Figure 6, it can be observed
how the execution time ratio of AdaptW and LinearS in-
creases as the resolution of the input stereo pair is increased.
For a resolution of 1800×1500 pixels and 240 disparity lev-
els, LinearS is around 50 times faster than AdaptW.

6. Conclusions

In this paper, we propose a new O(1) costs aggregation
method based on a linear model. Compared to existing O(1)
methods, our proposal does not rely on the Porikli’s method
[13]. To our knowledge, it is the first O(1) costs aggrega-
tion method which relies on a symmetric strategy. More-
over, unlike previous O(1) algorithms, aggregation based
on colour images can be performed with a reasonable com-
putational cost. Thanks to these two improvements (sym-
metric and colour-based aggregation) our linear stereo algo-
rithm clearly outperforms previous O(1) stereo algorithms

1February 23rd2011 our P-LinearS algorithm classifies in position
number 15 in the Middlebury ranking.



(a) (b) (c) (d)
Figure 3. Left image of each one of the Middlebury datasets. (a) “Tsukuba” images. (b) “Venus” images. (c) “Teddy” images. (d) “Cones”
images.

(a) (b) (c) (d)
Figure 4. Disparity maps computed by LinearS (upper row) and AdaptW (lower row). (a) “Tsukuba” images. (b) “Venus” images. (c)
“Teddy” images. (d) “Cones” images.

(a) (b) (c) (d)
Figure 5. Disparity maps computed by P-LinearS (upper row) and P-AdaptW (lower row). (a) “Tsukuba” images. (b) “Venus” images. (c)
“Teddy” images. (d) “Cones” images.

in terms of accuracy of the results. Not only our algorithm
outperforms previous O(1) solutions, but experimental re-
sults show that the proposed method produces accurate dis-

parity maps comparable to those of adaptive-weight aggre-
gation. However, compared to the adaptive-weight aggrega-
tion approach, our proposal has a computational complexity
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Figure 6. Execution time ratio of AdaptW and LinearS versus
the sampling factor of the Teddy stereo pair (original resolution
1800×1500 pixels).

independent of the size of the window.
In this paper we have also proposed a disparity refine-

ment strategy based on a combination of two already exist-
ing techniques. Each one of the techniques aim at solving
common problems that arise in local stereo algorithms. The
combination of these techniques provides, according to the
Middlebury ranking, a notable improvement in accuracy of
the resulting disparity maps. In fact, the overall proposed
algorithm provides disparity maps comparable to state-of-
the-art algorithms.

Finally, it has been proven that the O(1) nature of the
algorithm makes it highly scalable for future applications
using higher resolution stereo pairs. According to our tests,
for high resolution images, our algorithm is around 50 times
faster than adaptive-weight based stereo matching.

References

[1] F. Crow. Summed-area tables for texture mapping. Proc.
Special Interest Group on Graphics, pages 217–212, 1984. 3

[2] M. Gong, R. Yang, L. Wang, and M. Gong. A performance
study on different cost aggregation approaches used in real-
time stereo matching. Intl J. Computer Vision, 75(2):283–
296, 2007. 2

[3] K. He, J. Sun, and X. Tang. Single image haze removal us-
ing dark channel prior. In Proc. IEEE Workshop Computer
Vision and Pattern Recognition, pages 1956–1963, 2009. 3

[4] K. He, J. Sun, and X. Tang. Guided image filtering. In Eu-
ropean Conf. Computer Vision, pages 1–14, 2010. 3

[5] H. Hirschmüller. Stereo processing by semiglobal matching
and mutual information. IEEE Trans. Pattern Analysis and
Machine Intelligence, 30(2):328–341, 2008. 4, 6

[6] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local
stereo matching using geodesic support weights. In Proc.
IEEE Intl Conf. on Image Processing, pages 2093–2096,
2009. 1

[7] M. Ju and H. Kang. Constant time stereo matching. In
Machine Vision and Image Processing Conf., pages 13–17,
2009. 1, 2, 3, 4, 5

[8] R.-D. Lan and P. Remagnino. Robust matching by partial
correlation. In Proc. British Machine Vision Conf., pages
651–660, 1995. 2

[9] A. Levin, D. Lischinski, and Y. Weiss. A closed-form solu-
tion to natural image matting. IEEE Trans. Pattern Analysis
and Machine Intelligence, 30(2):228–242, 2008. 3

[10] S. Mattoccia. A locally global approach to stereo correspon-
dence. In Proc. IEEE Int. Workshop on 3D Digital Imaging
and Modelling, pages 1763–1770, 2009. 4, 6

[11] S. Mattoccia, S. Giardino, and A. Gambini. Accurate and ef-
ficient cost aggregation strategy for stereo correspondence
based on approximated joint bilateral filtering. In Asian
Conf. Computer Vision, pages II: 371–380, 2009. 2

[12] S. Paris and F. Durand. A fast approximation of the bilateral
filter using a signal processing approach. Intl J. Computer
Vision, 81(1):24–52, 2009. 2

[13] F. Porikli. Constant time o(1) bilateral filtering. In Proc.
IEEE Conf. Computer Vision and Pattern Recognition, pages
1–8, 2008. 2, 3, 6

[14] K. Prazdny. Detection of binocular disparities. Biological
Cybernetics, 52:93–99, 1985. 2

[15] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and
M. Gelautz. Fast cost-volume filtering for visual correspon-
dence and beyond. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2011. 3

[16] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. Dodg-
son. Real-time spatiotemporal stereo matching using the
dual-cross-bilateral grid. In European Conf. Computer Vi-
sion, volume 6313, pages 510–523. Springer Berling / Hei-
delberg, 2010. 2

[17] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Intl
J. Computer Vision, 47(1-3):7–42, 2002. 1, 3, 4

[18] D. Scharstein and R. Szeliski. Middlebury stereo evaluation
- version 2, http://vision.middlebury.edu/stereo/eval. 2, 4, 6

[19] R. Szeliski. Computer vision: algorithms and applications.
Springer, 2010. 1, 2, 3

[20] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In Proc. IEEE Intl Conf. on Computer Vision,
pages 839–846, 1998. 3, 6

[21] F. Tombari, S. Mattoccia, L. D. Stefano, and E. Addimanda.
Classification and evaluation of cost aggregation methods for
stereo correspondence. Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2008. 2

[22] K.-J. Yoon and I. S. Kweon. Adaptive support-weight ap-
proach for correspondence search. IEEE Trans. Pattern
Analysis and Machine Intelligence, 28(4):650–656, 2006. 1,
2, 3, 4, 5

[23] K. Zhang, G. Lafruit, R. Lauwereins, and L. Van Gool. Joint
integral histograms and its application in stereo matching.
In Proc. IEEE Intl Conf. Image Processing, pages 817–820,
2010. 1, 3, 4, 5, 6

[24] A. Zomet and S. Peleg. Multi-sensor super resolution.
In Proc. IEEE Workshop Applications of Computer Vision,
pages 27–31, 2002. 3


