
Near real-time Fast Bilateral Stereo on the GPU

Stefano Mattoccia
DEIS - ARCES

University of Bologna
stefano.mattoccia@unibo.it

Marco Viti
DEIS

University of Bologna
vitimar@gmail.com

Florian Ries
ARCES

University of Bologna
fries@arces.unibo.it

Abstract

State of the art local stereo correspondence algorithms
that adapt their supports to image content allow to in-
fer very accurate disparity maps often comparable to al-
gorithms based on global disparity optimization methods.
However, despite their effectiveness, accurate local ap-
proaches based on this methodology are also computation-
ally expensive and several simplifications aimed at reduc-
ing their computational load have been proposed. Unfortu-
nately, compared to the original approaches, the effective-
ness of most of these simplified techniques is significantly
reduced. In this paper, we consider an efficient and accurate
algorithm referred to as Fast Bilateral Stereo (FBS) that en-
ables to efficiently obtain results comparable to state of the
art local approaches describing its mapping on GPUs with
CUDA. Experimental results on two NVIDIA GPUs show
that our CUDA implementation delivers, on standard stereo
pairs, accurate and dense disparity maps in near real-time
achieving speedup greater than 100X with respect to the
equivalent CPU-based implementation.

1. Introduction

Due to its relevance in several practical applications (e.g.
3D reconstruction, robot vision, object recognition and cat-
egorization, surveillance and many others) inferring 3D in-
formation from standard imaging systems is a relevant topic
in computer vision. Stereo vision uses a pair of synchro-
nized cameras sensing the same scene from different view-
points. If the intrinsic and extrinsic parameters [14] of the
stereo system are computed by means of calibration, solv-
ing the correspondence problem (i.e. finding the projections
of the same point of the scene into the two image of the
stereo camera) allows to obtain depth by means of triangu-
lation. Given a point in one of the two images, the geometry
of a stereo camera restricts the search area in the other im-
age to a 1D domain. Therefore, although not mandatory, in
most cases stereo pairs are rectified [14] so as to have corre-
sponding points that lie on the same image scanline. In this

paper, as usual in this area, we assume we are dealing with
rectified stereo pairs.

The correspondence problem is a crucial and difficult
task extensively reviewed in [14] and [13]. Scharstein
and Szeliski classify most stereo algorithms in two major
classes: local algorithms and global algorithms. Moreover,
according to this taxonomy, most algorithms perform some
of the following four phases: cost computation, cost ag-
gregation, disparity computation and disparity refinement.
Global algorithms typically ignore cost aggregation focus-
ing on the disparity optimization phase by means of effi-
cient energy minimizations techniques [15] based on Be-
lief Propagation or Graph Cut. On the other hand, local
approaches typically ignore disparity optimization focusing
on the cost aggregation phase performed on a small patch
around each point referred to as the support. Extensive re-
views and evaluation of state of the art local algorithms can
be found in [17, 18]. According to the standard Middle-
bury evaluation website [12] in most cases local algorithms
are outperformed by global algorithms. Nevertheless, state
of the art local algorithms that perform cost aggregation
by means of an adapting weight strategy obtain accuracy
comparable to global ones. Unfortunately, and similarly to
global algorithms, most of the approaches based on adapt-
ing weight strategies are computationally expensive and of-
ten not suited for practical applications.

In this paper we consider a local algorithm, referred to
as Fast Bilateral Stereo (FBS) [6], based on a framework
for cost aggregation that enables to obtain much more ef-
ficiently results comparable to state of the art local stereo
algorithms based on adapting weights. The FBS algorithm
on a CPU, despite its effectiveness compared to algorithms
with similar accuracy, is not able to deliver disparity maps
with frame rates suitable for most practical applications.
Therefore, in this paper we show that, deploying the pow-
erful parallel capability available in modern GPUs, the FBS
algorithm can be significantly accelerated. Experimental re-
sults with a medium-class GPU show that our mapping de-
livers accurate and dense disparity maps in near real-time.

This paper is organized as follows. In section 2 we re-

136



Figure 1. Adapting weigh strategies: the support S for reference
or target images concerned with the central point depicted in red.
The weight of point q is computed, according to different cues,
with respect to point p at the center of the support.

view related work concerning state of the art local stereo al-
gorithms based on adapting weight approaches and relevant
GPU-based stereo vision algorithms. In Section 3 we pro-
pose an efficient parallel mapping of the FBS algorithm on
GPUs with CUDA. Detailed experimental results provided
in Section 4 highlight the notable speed-up achieved by our
GPU mapping compared to a CPU-based implementation
of FBS. Conclusions are drawn in section 5.

2. Related work

In this section we review state of the art local algorithms
based on adapting weight approaches and relevant imple-
mentations of stereo vision algorithms on GPUs. Extensive
reviews and evaluations of state of the art stereo vision algo-
rithms can be found in [14], [13, 12] while detailed reviews
and evaluations of state of the art cost aggregation strategies
typically deployed by local stereo algorithms can be found
in [18] and [17, 16].

2.1. Local stereo vision algorithms based on adapt-
ing weight strategies

According to [18], [17, 16] local stereo algorithms that
aggregate costs by means of adapting weight strategies out-
perform approaches that explicitly modify the shape of their
supports. The idea to assign weights according to image
content to points within the supports was proposed in [10],
[2] and [21]. However, the effectiveness of this idea be-
came clear with the Adaptive Weights (AW) approach pro-
posed by Yoon and Kweon [23]. In AW, each point (e.g. q in
Figure 1) within the support of the reference and the target
image of the stereo pair is weighted according to two strate-
gies. The first related to the Euclidean distance Δ(q)s, re-
ferred to as proximity distance, between the examined point
q and the point p at the center of the support. Thus, points
closer to the center of the support receive higher weights.
The second strategy aims at aggregating points with similar
disparity. To this aim, with the disparity being unknown a
priori, the cue deployed is the color distance. That is, this

method assigns to q a weight according to the Euclidean
distance Δ(q)c between colors of p and q in defined color
space (i.e. CIELab in AW). Therefore, points with lower
Δ(q)c are assumed more likely to be at the same disparity
of the point at the center of the support. Weights are com-
puted in the reference and target image (according to the
considered disparity d). In AW, being γs and γc two param-
eters empirically set, the overall weight assigned to a point
q within the support region of the reference (l = R) or the
target image (l = T ) centered in p is computed by means
of:

Wl(p, q) = e
−Δ(q)s

γs × e
−Δ(q)c

γc (1)

Given a pointwise matching cost m(q, d) (e.g., Trun-
cated Absolute Differences (TAD) in [23]) for point q at
disparity d, the overall weighted matching cost M(p, d) as-
signed to the support S centered in p at disparity d is:

M(p, d) =

∑

qi∈S(p)

WR (p, qi) ·WT (p, qi) ·m(qi, d)

∑

qi∈S(p)

WR (p, qi) ·WT (p, qi)
(2)

As reported in [23] and in [18, 17, 16], this symmet-
ric strategy for cost aggregation is very effective. Never-
theless, improvements to the original adapting weight tech-
nique [23] were proposed discarding the proximity distance
and using as cues segmentation, Segment Support [17], or
geodesic weights [4]. Unfortunately, on standard stereo
pairs, these techniques share with AW execution times of
minutes on standard CPUs. This fact limits their deploy-
ment in most practical applications.

Therefore, techniques aimed at speeding-up the execu-
tion time of state of the art techniques for cost aggregation
were proposed. In some cases (e.g. [19]) the computational
load is reduced by computing weights asymmetrically only
on the reference image. Although this choice enabled sig-
nificant speed-ups, the accuracy of the resulting disparity
maps is also significantly reduced.

A different approach for accelerating the AW cost ag-
gregation strategies without affecting its effectiveness was
proposed in [6]. The Fast Bilateral Stereo (FBS) algo-
rithm combines the effectiveness of standard correlative ap-
proaches with the effectiveness of approaches based on the
adapting weight methodology. The FBS algorithm relies
on a framework that computes symmetric and simplified
weights on a block basis and computes matching costs (i.e.
TAD), precisely and in constant time, on a point basis by
means of integral images [1] or box-filtering [7] techniques.
The key idea behind FBS can be explained observing Fig-
ure 2. Given a support S of size B×B, FBS splits S in non
overlapping blocks of size b×b. For each point within a b×b

137



Figure 2. Fast Bilateral Stereo: the support S for reference and
target images concerned with the central point p depicted in red.
FBS partitions the support of size B×B in non overlapping blocks
of equal size b × b. Approximated proximity and color distances
are computed on a block basis while matching cost is computed
precisely and in constant time on a point basis.

block, a single proximity weight, computed according to the
Euclidean distance between p and the center of the block q,
is assigned. Moreover, to each b × b block is assigned a
single color proximity distance computed according to the
Euclidean distance between the color intensity of p and the
average color intensity computed on the considered b × b
block. The color space used by FBS is RGB. Conversely,
since to each b× b block is assigned a single overall weight
with a methodology similar to 2, the matching cost for each
point belonging to the same block can computed precisely
and efficiently in constant time by means of [1]. Moreover,
the same techniques can be used to compute efficiently and
in constant time the average intensity of each b × b block.
This framework enables to reduce, by a factor b × b, the
number of weight computation 1 as well as the number of
operations required to compute 2. According to the results
reported in [6] and [16] FBS obtains result comparable to
AW much more efficiently (according to [6], on the same
standard stereo pairs, FBS requires seconds while AW re-
quires minutes). The FBS algorithm obtained optimal re-
sults with blocks of size b = 3. However, parameter b can
be used to trim accuracy vs efficiency [6].

2.2. Stereo vision algorithms on GPUs

Thanks to their effectiveness, GPUs are becoming a very
popular computing platform in computer vision and some
GPU-based stereo vision implementations have been pro-
posed so far. In [3] Hernst and Hirschmuller implemented
the Semi-Global Matching method reaching peak of 13 fps
on a NVIDIA GeForce 8800 Ultra with 320 × 240 stereo
pairs and disparity range of 64 pixels.

In [11] Richardt et al1 proposed a real-time stereo match-
ing technique inspired by the Yoon and Kweon’s adaptive

1This is an updated version of the paper. The originally published paper
unintentionally failed to describe properly this approach.In fact, this algo-
rithm computes weights symmetrically and its loss in accuracy, compared
to the adaptive weights method, comes primarily from the use of greyscale
images. We apologize for this unintentional mistake.

support weights algorithm [23]. Their algorithms com-
putes weights symmetrically deploying the bilateral grid
approach to achieve a speed-up of 200X compared to a
straightforward full-kernel GPU implementation. However,
they provide results on greyscale images and the accuracy
of the resulting disparity maps is not equivalent to [23].

Wang et al [20] proposed a stereo algorithm that com-
bines Dynamic-Programming with simplified cost aggre-
gation step based on a simplified and asymmetric version
of [23]. They achieves high quality results in real-time
achieving over 50 million disparity evaluations per second
(MDE/s).

In [22], Yang et al proposed the mapping on a GPU of a
belief propagation based algorithm that generates high qual-
ity results. They reports a speed-up of 45x compared to the
CPU equivalent implementation.

Kalarot and Morris, in [8] compared the performance of
the same stereo vision algorithm on FPGA and and GPU so
as to better understand the advantages of each high perfor-
mance computing architecture.

3. Fast Bilateral Stereo on the GPU

In this section we describe the mapping of the FBS al-
gorithm on GPUs with CUDA [9, 5]. Our GPU implemen-
tation was evaluated on a medium-class NVIDIA GeForce
GTX 460 card and a high-end NVIDIA Tesla C2070. The
GTX 460 has 7 multiprocessors, each one with 48 proces-
sors with a clock of 1350 Mhz, and has 1 GB of global
memory GDDR5 operating on a memory clock of 1800
Mhz. The Tesla C2070 has 14 multiprocessors, each one
with 32 processors with a clock of 1150 Mhz, and has 6 GB
of global memory GDDR5 operating on a memory clock of
1500 Mhz.

3.1. CUDA: Compute Unified Device Architecture

Nvidia’s Compute Unified Device Architecture (CUDA)
provides a generic driver architecture for GPUs; it offers a
flexible programming model with minimal extensions to C,
allowing the programmer to define C function, called ker-
nels, that, when called, are executed within the GPU in par-
allel by different threads.

In CUDA a GPU is seen as made of many Streaming
Multiprocessors (SM0 . . . SMn−1), each SM consists of
a set of Streaming Processors (SP0 . . . SPm−1). Each
multiprocessor has on-chip memory of four types: one set
of local registers per scalar processor, one memory shared
by its scalar processors called shared memory), two read-
only caches called constant memory and texture memory,
respectively. Moreover, all multiprocessors have access to
the same global memory. Finally, each multiprocessor has
one - or two, depending on the GPU’s Compute Capability -
common instruction unit which, thanks to a very lightweight

138



Figure 3. Different types of memory deployed by the three kernels that map the FBS algorithm on the GPU.

thread scheduling mechanism, creates, manages and exe-
cutes concurrent threads with zero scheduling overhead.

A number k of threads (t0 . . . tk−1) can be assigned to
an SM forming a thread block. A block physically maps to
an SM but the number of threads in a block can be greater
than number of SPs; anyway, threads are split into warps
- each one composed of 32 threads - and only one warp is
active at a given time. Active threads execute the same in-
struction in parallel. If there is a branch in the code, threads
agreeing on instructions execute in parallel while the other
branches wait for them to complete.

Performance optimization revolves around three basic
strategies: (a) maximize parallel execution to achieve max-
imum utilization; (b) optimize memory usage to achieve
maximum memory throughput; (c) optimize instruction us-
age to achieve maximum instruction throughput. Which
strategies will yield the best performance gain for a partic-
ular portion of an application depends on the performance
limiters for that portion: for example, optimizing instruc-
tion usage of a kernel that is mostly limited by memory ac-
cesses will not yield any significant performance gain.

3.2. Parallel mapping of the FBS algorithm on the
GPU

In this paper we exploit the intrinsic parallelism exposed
by the GPU assigning to each thread one pixel of the ref-
erence image. For each pixel the thread will process the
entire disparity range δ. We split the entire FBS algorithm

in 3 main portions, each one associated with a kernel.

• The first kernel, referred to as StereoColorAvg, takes as
input the reference and target images in order to com-
pute the average RGB values for the reference and tar-
get images required by FBS to compute the weights for
each block b× b.

• The second kernel, referred to as TAD, takes as in-
put the reference and target images and computes the
matching cost (i.e. TAD for FBS) of the pixels within
each block of size b× b.

• The third kernel referred to as FBS DisparityMap
computes, for each pixel of reference image, the
weighted cost of each possible correspondence with
the pixels of the target within the disparity range
δ. Once these operations are completed, the ker-
nel searches for the candidate with the minimum cost
within the disparity range δ.

With typical parameters [6] of the FBS algorithm (i.e.
with b ≤ 7 and B ≥ 39), the FBS DisparityMap kernel,
compared to the other two kernels, it is the most compu-
tationally expensive on GPUs. Therefore we initially eval-
uated the occupancy of each kernel changing the number
of threads for each block in order to maximize the oc-
cupancy of the the FBS DisparityMap kernel. This pre-
liminary study highlighted that, with typical parameters of

139



the FBS algorithm, the optimal occupancy can be obtained
with blocks of 256 threads. With this block size we ob-
served an occupancy of 0.667 during the execution of the
FBS DisparityMap kernel and an occupancy of 0,833 dur-
ing the execution of the other two kernels. When the size
of the stereo pair is not multiple of the the block size (i.e.
256), the input images are increased to satisfy this constrain
(padding) so as to avoid the expensive handling of out of
memory memory accesses. In the experimental result sec-
tion we report (Table 2) the average execution time of each
module of the GPU implementation of the FBS algorithm.

It is worth noting that the first two kernels are indepen-
dent of each other, thus can run simultaneously on the GPU.
On the other hand, the third kernel requires results provided
by the first two kernels; therefore, it can start only when the
other two kernels have completed their execution. Figure 3
shows in detail how the different types of memory available
in the GPU are used by the three kernels. Finally, since a
major bottleneck in our GPU implementation of FBS arises
from the frequent use of arithmetic instructions with low
throughput (i.e. exponentials and square roots), we used in-
trinsics rather than regular functions for cost computation
on the GPU. Intrinsics are less accurate but the difference
in the final disparity map are in most cases negligible.

3.2.1 StereoColorAvg and TAD kernels

The texture cache is optimized for 2D spatial locality, so
threads of the same warp that read close texture addresses
in 2D will achieve the best performance. Therefore, in or-
der to reduce the access time to reference and target images,
we used texture memory for StereoColorAvg and TAD ker-
nels. Moreover, we store the stereo pair as 2D CUDA array
being this data structure read only and optimized for texture
fetching. The pseudo-codes in Figure 4 describe, respec-
tively, the operations executed by the StereoColorAvg and
TAD kernels.

3.2.2 FBS DisparityMap kernel

Once completed the execution of the StereoColorAvg and
TAD kernels, and before launching the third and final
FBS DisparityMap kernel, some preliminary operations are
required. In order to reduce the global memory latency, it
is important to bind the texture memory, as well as the ref-
erence and target images, with the average RGB values -
already computed by the StereoColorAvg kernel. Similarly
to the strategy adopted for reference and target images, av-
erage RGB values should be stored in CUDA arrays - there-
fore copied from the read-write linear memory to CUDA
array. However, we observed that the overhead associated
with the copy makes more efficient to leave average RGB
values in linear memory.

each thread do:
{
determine which is

the pixel to process (x,y);
compute the sums of RGB values

of the pixels within the blocks
centered in (x,y), for the
Reference and for the Target;

normalize the two sums;
write these values in global memory;

}

each thread do:
{
determine which is

the pixel to process (x,y);
for each disparity d
{

compute the TAD of RGB values of
the pixels within the block
centered in (x,y) in the Reference
and the block centered in (x-d,y)
in the Target;

write this value in global memory;
}

}

Figure 4. Pseudo-code for (Top)the StereoColorAvg kernel and
(Bottom) the TAD kernel.

The second step aims at avoiding redundant computa-
tions concerned with the proximity distance weights re-
quired by each thread. Therefore, these weights are com-
puted only once by the CPU, copied into the global memory
of the GPU and shared by the threads. Finally, these weights
are bound to the constant memory cache so as to speed-up
accesses. It is noteworthy that when a warp does a constant
memory request, it is split into as many separate requests
as there are different memory addresses in the request, de-
creasing throughput by a factor equal to the number of sep-
arate requests. Fortunately, synchronizing the threads, the
spatial weights requests are always at the same address, so
the maximum throughput is achieved. The pseudo-code re-
ported in Figure 5 describes the operations executed by the
FBS DisparityMap kernel.

4. Experimental results

In this section we provide2 a detailed evaluation of our
mapping on two NVIDIA GPUs. We compare the FBS al-
gorithm proposed in [6] to the implementation of the same
algorithm on the GPU. Both versions of FBS include sub-

2Additional experimental results are available at this web page:
www.vision.deis.unibo.it/smatt/FBS_GPU.html

140

www.vision.deis.unibo.it/smatt/FBS_GPU.html


each thread do:
{
determine which is

the pixel to process (x,y);
for each disparity d
{

compute and save the cost M at d;
compare the cost M with the best one;
update min disparity and cost;

}
scale min disparity;
write this value in global memory;

}

Figure 5. Pseudo-code of the FBS DisparityMap kernel.

pixel disparity estimation by means of a second degree fit-
ting in proximity of the best score found by the algorithm.
In Figure 6 we report the disparity maps computed by the
proposed GPU implementation of the FBS algorithm, the
CPU implementation of the FBS algorithm and the result of
the AW [23] algorithm available, in [17, 16]. Detailed errors
and disparity maps, computed on the Middlebury dataset
[13, 12], for the FBS and AW algorithms are available in
[16]. The Figure confirms, qualitatively, that our GPU map-
ping provides disparity maps equivalent to those provided
by our CPU implementation. It is worth noting that, al-
though the algorithms mapped on the CPU and on the GPU
are almost equivalent, the results reported in Figure 6 show
slight differences. These differences mostly occur at the
edges of the images (e.g. within the yellow box depicted
in Figure 6), due to the different handling of out-of-range
texture coordinates in the GPU, and in low textured regions
(e.g. within the green circles depicted in Figure 6) due to
the numerical approximations of the intrinsic functions de-
ployed. Nevertheless, our quantitative comparison confirms
that in most points the results obtained with the GPU ver-
sion FBS algorithm are equivalent to those obtained by the
original CPU version. For our experiments we used the
same parameters and configurations of the FBS algorithms
reported in [6].

Table 1 shows the performance speed-up achieved by our
mapping of the FBS algorithm on a medium-class NVIDIA
GeForce GTX 460 and on a high-end NVIDIA Tesla C2070
with respect to our CPU implementation of the FBS algo-
rithm on a CPU (using a single core). For both cases we
report results according to the Middlebury dataset with two
different configurations of the FBS algorithms: with param-
eters B = 39, b = 3 and with parameters B = 45, b = 5.
Table 1 clearly highlights the notable speed-up achieved by
the proposed GPU implementation in both examined con-
figurations. Using the GTX 460, for the larger stereo pairs
Teddy and Cones, with disparity range δ = 60, the speed-

up is greater than 70X for B = 39, b = 3 and greater than
60X for B = 45, b = 5 corresponding, respectively, to 3.3
and 5.5 fps. On the Tsukuba stereo pair the frame rate is
15.3 and 25 for B = 39, b = 3 and B = 45, b = 5, re-
spectively. With the high-end Tesla C2070 we were able to
improve the performance of about 30% obtaining speed-ups
greater than 100X with parameters of the FBS algorithms
B = 39, b = 3 and around 80X on average with parameters
B = 45, b = 5. It is worth to note that the Tesla is op-
timized for double precision floating point operations that
we do not use in our implementation of the FBS algorithm
on GPU. Moreover the Tesla C2070, compared to the GTX
460, has also a higher bandwidth and a larger global mem-
ory. These latter features would be more effective dealing
with stereo pairs larger than those used for our experiments.
The experiments with both devices confirm the effective-
ness of the proposed GPU mapping of the FBS algorithm
on GPUs.

Stereo Execution Measured
Pair GPU Time [msec] Speed–up

(a) (b) (a) (b)

Tsukuba GTX 460 65 40 65,5X 53,2X
384 × 288 C2070 46 29 101X 75,9X
δ = 16
Venus GTX 460 114 69 71,7X 57,4X

434 × 383 C2070 80 51 103X 82,3X
δ = 20
Teddy GTX 460 302 178 72,7X 60,1X

450 × 375 C2070 201 122 105X 87,4X
δ = 60
Cones GTX 460 303 181 72,4X 60,6X

450 × 375 C2070 200 122 106X 87,1X
δ = 60

Table 1. Results of columns (a) are obtained with a supports of
size 39 × 39 and block of size 3 × 3, while the ones of columns
(b) are obtained with a supports of size 45 × 45 and block of size
5 × 5. The GPUs used for these experiments were an NVIDIA
GeForce GTX 460 and an NVIDIA Tesla C2070. The CPU was
an Intel Celeron E3300 @ 2,50 GHz (using a single core).

In Table 2 we also report the average breakdown of the
GPU processing time for the two previously considered
configurations of the FBS algorithm. The table reports that
most of the time is spent executing the FBS DisparityMap
kernel. Nevertheless, it is worth noting that, increasing the
size of the block size b the percentage of time spent exe-
cuting the TAD kernels, compared to the overall execution
time, gets more relevant . This behavior can be explained
observing that with larger b the number of accesses to the
texture memory increases reducing, due to worse data lo-
cality, the texture cache hit rate. The execution time of
the TAD kernel increases proportionally to b. Nevertheless,

141



with block size b = 3 and b = 5, typically used by FBS this
problem is almost negligible.

Time Used
Operation [%]

(a) (b)

Host to GPU memcpy 0,25 0,49
StereoColorAvg 0,10 0,20

TAD 3,48 16,28
FBS DisparityMap 95,98 82,63

GPU to Host memcpy 0,19 0,40

Table 2. Breakdown of GPU time: these values are obtained, on
a GTX 460, averaging the breakdowns on the Tsukuba, Venus,
Teddy and Cones stereo pairs. Results reported in column (a) are
concerned with supports of size 39 × 39 and block of size 3× 3,
while results reported in column (b) are concerned with supports
of size 45× 45 and block of size 5× 5.

5. Conclusions

In this paper we have proposed the mapping of Fast Bi-
lateral Stereo, an efficient algorithm with accuracy compa-
rable to state of the art approaches based on adapting weight
cost aggregation strategies, on a GPU with CUDA. Our pro-
posal enables, on standard stereo pairs, to deliver disparity
maps in near-real time. The measured speed-up, with re-
spect to an efficient implementation of the FBS algorithm
on CPU, is greater than 70X on a GTX 460 GPU and greater
than 100X on a Tesla C2070 GPU.

Acknowledgements

The authors would like to thank NVIDIA for the dona-
tion of the Tesla C2070 GPU.

References

[1] F. Crow. Summed-area tables for texture mapping. Computer
Graphics, 18(3):207–212, 1984. 137, 138

[2] T. Darrel. A radial cumulative similarity transform for robust
image correspondence. In Proc. Conf. on Computer Vision
and Pattern Recognition, pages 656–662, 1998. 137

[3] I. Ernst and H. Hirschmüller. Mutual information based
semi-global stereo matching on the gpu. In Proceedings
of the 4th International Symposium on Advances in Visual
Computing, ISVC ’08, pages 228–239, 2008. 138

[4] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local
stereo matching using geodesic support weights. In ICIP,
2009. 137

[5] D. B. Kirk and W. mei W. Hwu. Programming Massively
Parallel Processors: A Hands-on Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2010. 138

[6] S. Mattoccia, S. Giardino, and A. Gambini. Accurate and
efficient cost aggregation strategy for stereo correspondence
based on approximated joint bilateral filtering. In Proc. of
ACCV2009, 2009. 136, 137, 138, 139, 140, 141, 143

[7] M. Mc Donnel. Box-filtering techniques. Computer Graph-
ics and Image Processing, 17:65–70, 1981. 137

[8] J. Morris and R. Kalaot. Comparison of fpga and gpu imple-
mentation of real-time stereo vision. In ECVW 2010, 2010.
138

[9] NVIDIA. Nvidia. www.nvidia.com. 138
[10] K. Prazdny. Detection of binocular disparities. Biological

Cybern, 52:9399, 1985. 137
[11] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A. Dodg-

son. Real-time spatiotemporal stereo matching using the
dual-cross-bilateral grid. In ECCV (3), pages 510–523, 2010.
138

[12] D. Scharstein and R. Szeliski. Middlebury stereo vision.
http://vision.middlebury.edu/stereo/. 136, 137, 141

[13] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Int.
Jour. Computer Vision, 47(1/2/3):7–42, 2002. 136, 137, 141

[14] R. Szeliski. Computer Vision: Algorithms and Applications.
Springer, 2010. 136, 137

[15] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother. A
comparative study of energy minimization methods for
markov random fields with smoothness-based priors. IEEE
Trans.PAMI, 30(6):1068–1080, 2008. 136

[16] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Ad-
dimanda. Classification and evaluation of cost
aggregation methods for stereo correspondence.
www.vision.deis.unibo.it/spe/SPEHome.asp. 137, 138,
141, 143

[17] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda.
Classification and evaluation of cost aggregation methods for
stereo correspondence. In CVPR08, pages 1–8, 2008. 136,
137, 141, 143

[18] L. Wang, M. Gong, M. Gong, and R. Yang. How far can
we go with local optimization in real-time stereo matching.
In Proc. Third Int. Symposium on 3D Data Processing, Visu-
alization, and Transmission (3DPVT 2006), pages 129–136,
2006. 136, 137

[19] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister. High-
quality real-time stereo using adaptive cost aggregation and
dynamic programming. In 3DPVT ’06, pages 798–805,
2006. 137

[20] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister.
High-quality real-time stereo using adaptive cost aggrega-
tion and dynamic programming. In Proc. 3rd Int. Sympo-
sium 3D Data Processing, Visualization and Transmission
(3DPVT’06), pages 798–805, 2006. 138

[21] Y. Xu, D. Wang, T. Feng, and H. Shum. Stereo computa-
tion using radial adaptive windows. In Int. Conf. on Pattern
Recognition, volume 3, pages 595– 598, 2002. 137

[22] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér.
Real-time global stereo matching using hierarchical belief
propagation. In BMVC, pages 989–998, 2006. 138

[23] K. Yoon and I. Kweon. Adaptive support-weight approach
for correspondence search. IEEE Trans. PAMI, 28(4):650–
656, 2006. 137, 138, 141

142



Figure 6. Disparity maps concerned with the images of the Middlebury dataset. (Left) Results of the proposed implementation of FBS on
GPU (Center) Results of the FBS algorithm [6] on a CPU (Right) Results of the Adaptive Weights (AW) algorithms according to [17, 16].

143


