
Enabling Energy-Efficient Unsupervised Monocular
Depth Estimation on ARMv7-Based Platforms

Valentino Peluso�, Antonio Cipolletta�, Andrea Calimera�, Matteo Poggi◦, Fabio Tosi◦, Stefano Mattoccia◦
�Politecnico di Torino, 10129 Italy ◦Università di Bologna, 40136 Italy

Abstract—This work deals with the implementation of energy-
efficient monocular depth estimation using a low-cost CPU for
low-power embedded systems. It first describes the PyD-Net
depth estimation network, which consists of a lightweight CNN
able to approach state-of-the-art accuracy with ultra-low resource
usage. Then it proposes an accuracy-driven complexity reduction
strategy based on a hardware-friendly fixed-point quantization.
Finally, it introduces the low-level optimization enabling effective
use of integer neural kernels. The objective is threefold: (i) prove
the efficiency of the new quantization flow on a depth estimation
network, that is, the capability to retaining the accuracy reached
by floating-point arithmetic using 16- and 8-bit integers, (ii)
demonstrate the portability of the quantized model into a general-
purpose 32-bit RISC architecture of the ARM Cortex family, (iii)
quantify the accuracy-energy tradeoff of unsupervised monocular
estimation to establish its use in the embedded domain. The
experiments have been run on a Raspberry PI board powered by
a Broadcom BCM2837 chipset. A parametric analysis conducted
over the KITTI date-set shows marginal accuracy loss with
16-bit (8-bit) integers and energy savings up to 6.55× (9.23×)
w.r.t. floating-point. Compared to high-end CPU and GPU the
proposed solution improves scalability.

I. INTRODUCTION

A number of high level tasks in computer vision, such as
autonomous navigation and scene understanding, leverage on
3D reconstruction. To this aim, depth estimation from 2D
images plays a crucial role. Whereas active sensors such as
LiDARs are expensive and provide sparse depth measure-
ments, depth-from-images represents an attractive alternative
thanks to the rapid development of new stereo and monocular
techniques. These latter methods recently witnessed a dramatic
boost thanks to deep learning and the possibility to train neural
networks even without supervised ground-truth depth.
Monocular techniques, in particular, are an attractive solution
for all those low-cost or portable applications where the use
of multiple cameras would be too costly or cumbersome. The
drawback is the computational power they need to achieve low
latency. State-of-the-art methods rely on power-hungry GPUs
indeed, a too costly option for many embedded systems where
the primary constraints are power and energy consumption,
form-factor, and assembling costs. Here’s come the challenge:
bring depth estimation onto CPU-based COTS platforms, yet
preserving accuracy and performance. That’s also the ultimate
goal of this work, which describes design and optimization
practices for deploying energy efficient unsupervised monoc-
ular depth estimation on the ARMv7-A core.
Two key factors are paramount to make the GPU-to-CPU
shift success: (i) the design of a network topology able to

reach high accuracy with an amount of resources compliant to
that of an ordinary CPU, (ii) the availability of a vertical
optimization stack for fast code optimization and effective
deploying to real hardware. Concerning the first point, we
borrowed the Pyramidal Depth Network (PyD-Net) recently
introduced in [1] for unsupervised monocular depth estimation.
It consists of a lightweight Convolutional Neural Network
(CNN) yielding close to state-of-the-art and almost real-time
performance on commercial high-end CPUs. The PyD-Net
also offers multi-resolution estimation, a key feature to enable
adaptive energy-accuracy scaling. Starting from this model, we
propose smart strategies for network refinement, redundancy
removal and software porting. The optimization stages have
been integrated into an inference optimizer which delivers a
low-latency/high-throughput code of the PyD-Net. The front-
end runs a high-level optimization through quantization to 16-
bit and 8-bit fixed-point; the method is fast, highly accurate
and hardware-friendly. The back-end is in charge of the code
compilation and the optimal mapping onto the target ARMv7
architecture; it leverages a new optimized version of integer
neural kernels designed to exploit the computing resources of
the Single Instruction Multiple Data (SIMD) datapath available
in the Cortex-A architecture.
The savings achieved with the proposed design and opti-
mization strategies bring embedded depth estimation beyond
the state-of-the-art in terms of accuracy/energy-efficiency. The
results obtained with the ARMv7-A core show the quantized
versions of the PyD-Net (16- and 8-bit) have marginal accu-
racy losses and substantial speed-up w.r.t. the floating-point
(32-bit). That leads to high energy efficiency, demonstrating
both portability and scalability.

II. RELATED WORK

Deep learning for monocular depth estimation. While
early approaches consist of predictive models based on hand-
crafted features (e.g., [2], [3]) astonishing performance has
been achieved through supervised deep learning techniques
(e.g., [4], [5]). As an alternative to previous methods, unsu-
pervised approaches allow replacing loss based on ground-
truth depth data with much easier to obtain stereo images or
monocular video sequences. Garg et al. [6] used binocular
stereo pairs to train a network to predict the inverse depth that
maps one image onto the other. Godard et al. [7] improved
the depth estimation using the (sub-)differentiable bilinear
sampler mechanism proposed in [8] and by introducing a
left-right constraint, better architecture design and a more

robust appearance matching loss function [9]. Poggi et al. [1]
proposed PyD-Net, a novel light-weight CNN suited for real-
time applications on standard high-end CPU with accuracy
comparable to [7]. Concurrently, [10] and [11] improved the
results achieved by stereo supervision using, respectively, a
novel trinocular paradigm and adversarial loss during train-
ing. Other strategies based on stereo pairs rely on semi-
supervised training data [12], [13] or enforcement of temporal
consistency [14]. Finally, a more unconstrained strategy to
infer depth from a single image consists in using unlabeled
monocular videos for training [15], [16].
Quantization of Deep Neural Networks. Precision scaling
via fixed-point quantization is an effective strategy to improve
the efficiency of the inference stage. If properly implemented,
the shift from 32-bit floating-point to 16- and 8-bit fixed-
point [17], or even below [18], enables substantial savings
with no, or marginal, accuracy loss. Previous works have
been mainly validated on CNNs for image classification. Large
and over-parametrized nets, such as AlexNet, ResNet, VGG,
are common benchmarks, while smaller nets designed for
mobile applications, e.g. SqueezeNet or MobileNet, are rarely
benchmarked due to their high level of sensitivity to precision
scaling [19]. Most of the works quantify the benefits brought
by fixed-point at a very high-level, without assessing the
impact of a real hardware implementation. The impact of
quantization on complex computer vision tasks, such as object
detection [20], is a less studied aspect, while depth estimation
is an unexplored field. Moreover, since the PyD-Net already
shows a tiny topology, its quantization is a real challenge.
From a technical viewpoint, quantization refers to the search
of the fixed-point format that minimizes the accuracy loss.
This encompasses the definition of the bit-width and the
radix-point position. Existing techniques, mainly from the
DSP theory, differ in the radix-point scaling scheme. Since
a complete review is out of the scope of this work, we refer
interested readers to [21]. A more important aspect for deep
neural networks is the granularity of the quantization. Static
approaches [22] apply the same format over the entire net;
dynamic approaches, which exploit the irregular distribution
of the weights along the layers, makes use of a finer selection,
e.g. per-layer [23] or per-channel [24]. Hybrid strategies may
use a static bit-width for the whole net and a dynamic fixed-
point scaling [25]. It is worth emphasizing that a one-size-fits-
all solution does not exist; efficiency is affected by the kind
of neural networks and the characteristics of the underlying
hardware. Worse still, there are not clear indicators to predict
which strategy may reach better results and trial-and-error
becomes the only practical option.
Fixed-Point Neural Networks with ARMv7. An efficient
processing of fixed-point deep neural networks requires a
fine organization of the assembly code. This encompasses
the availability of optimized library that can support the
compiling stage. ARM recently released Computing Library
[26] an open-source repository of low-level routines that
support all the basic building blocks of neural models (e.g.
Activation, Convolution, Normalization, Pooling). The convo-

L1

L2

L3

L6

CONV 3x3 CONV 3x3, stride 2
DECONV 2x2, stride 2 CONCAT

H

Q

E

SIGMOID

Fig. 1. PyD-Net architecture [1].

lution kernels are available in floating-point, while the fixed-
point version is poorly optimized. Our preliminary analysis
of this library revealed fixed-point convolutions with 8-bit get
slower than 32-bit floating-point. The same is confirmed in this
technical report [27], where authors claim 25% performance
overhead.

III. PYD-NET DESIGN

PyD-Net [1] is designed to be extremely fast, efficient and
suitable for real-time performance on standard CPUs. It adopts
a combination of two compact functional components during
spatial-pyramidal feature extraction and depth estimation. In
particular, a lightweight encoder structure is used to transform
the input image to a L-level pyramid of high-dimensional
features, where level L1 represents the highest resolution
(i.e., half resolution). Specifically, as depicted in Fig. 1, the
pyramidal features are generated by multiple modules aimed
at reducing the spatial resolution, each of them comprised of
two 3 × 3 convolutional blocks, with stride 2 and 1. Each
module produces an increasing number of channels at each
scale, respectively 16, 32, 64, 96, 128 and 192, for a total of
6 levels (L1 - L6) from 1

2 to 1
64 of the original input resolution.

Depth decoders are deployed, instead, to infer depth maps at
each level of the pyramid. Specifically, starting from level L6,
highly informative features from the pyramidal extractor are
processed by four banks of filters producing, respectively, 96,
64, 32 and 8 features maps. Here a Sigmoid operator extracts
a depth map for that resolution. The next level of the pyramid
concatenates the features produced by the feature extractor and
those up-sampled from the lower-level. The process is then
repeated up to the highest resolution. Results from decoders
at half H, quarter Q and eight E resolution enable to trade
accuracy for complexity effectively. For instance, working at
low-resolution E, the topmost depth decoders for Q and H are
disabled thus reducing the amount of convolutions.

Quantizer
Trained
Neural.Net

Training
Data-Set

front-end

Emulator

back-end

Compiler

Q.Neural-Kernels

TensorFlow
PyTorch

PyTorch
GPGPU

exe
v7

Computing Library
by ARM

QFP

Fig. 2. Integrated flow for PyD-Net optimization and deployment on ARMv7.

Following [7], the network is trained on stereo pairs processing
a frame as input and reprojecting the other according to
estimated depth (actually, disparity). Appearance, smoothness
and left-right consistency loss terms are designed for this
purpose [7]. When compared with the more complex state-
of-the-art encoder-decoder architecture of [7], PyD-Net [1] is
about 16× smaller in size and 5× faster (at half resolution H),
yet achieving comparable depth accuracy.

IV. OPTIMIZATION FRAMEWORK

The framework depicted in Fig. 2 is designed for a fast deploy-
ing of fixed-point PyD-Nets with ARMv7 cores. Written in
Python (ver. 3.6.5), it consists of two main parts. The front-end
takes the PyD-Net trained with 32-bit floating-point (FP in
Fig. 2) and returns the fixed-point model Q. The quantization
scheme is accuracy-driven and implements a hybrid strategy:
the bit-width (16-bit or 8-bit, user defined) is static for all
the layers, while the radix-point is assigned on a per-layer
basis. This design choice allows a proper organization of the
low-level code and an efficient management of the hardware
resources. Incremental re-training (i.e. fine-tuning) is operated
in order to recover the loss introduced by quantization.
The quantizer leverages a fixed-point emulator for fast, yet
accurate loss assessment during optimization. It makes use
of PyTorch libraries (ver. 0.4.1) and implements a customized
version of fake-quantization [19] that works as follows. During
the inference stage, a software wrapper converts data (stored in
fixed-point) to floating-point. This strategy enables operations
with GPU cores. Once processed, data are converted back in
fixed-point and adjusted with auxiliary transformations (e.g.
saturation, truncation, binary-shift) that replicate the behavior
of the fixed-point units of the ARMv7 core (e.g. saturation of
the accumulator register, set-up of the radix-point position).
A comparison against the results produced with the ARMv7
core revealed the emulator is highly accurate: the maximum
absolute error is 8e-3 at the output of the network, with
no impact on the final accuracy of the depth estimation.
If compared to a standard training run, the execution time
increases by 20% (from 10 to 12 min. per epoch).
The back-end flow, powered by the GNU Arm Embedded
Toolchain [28] is fed with the fixed-point model Q and returns
a binary file. A set of new integer kernels optimized for
16- and 8-bit (Q.Neural-Kernel) enrich the ARM Computing
Library repository. Such kernels are designed to implement
the proposed per-layer fixed-point scheme and to improve the
utilization of the SIMD media accelerator of the ARMv7.

density distribution

S EXP MANTISSA

IL FL

-|Vmax| |Vmax|Qstep

outlier

0

low

high

Fig. 3. Floating-Point to Fixed-point quantization.

A. Fixed-Point Scaling

A real value V can be represented with a binary string Q of
length BW (bit-width) using the following mapping function:

V = Q · 2−FL (1)
where FL the fraction length, i.e. the position of the radix-
point in Q. Given a set of real values, e.g. the weights and
activations of the PyD-Net model, the choice of BW and
FL affects the information loss due to quantization. This
scenario is pictorially illustrated in Fig. 3, where the gradient
bar reflects the density distribution of the floating-point values,
|Vmax| is the largest modulus in the set, Qstep represents the
quantization step.
Since the bit-width BW is defined by the available hardware
(16 or 8 for the ARMv7), the problem reduces to searching the
optimal FL (the integer length IL is then given by BW -IL).
FL is constrained by |Vmax| as described in the following
equation:

FL =

⌊
log2

(
2BW−1 − 1

|Vmax|

)⌋
(2)

However, a trade-off with the quantization step Qstep does
also exist: the smaller the FL, the larger the Qstep. The
decision of which constraint to guard more (|Vmax| or Qstep)
mainly depends on the distribution of the original values and
their importance in the neural model.
It is worth mentioning that our problem formulation con-
siders a symmetric distribution [−|Vmax|,+|Vmax|]; outliers
are clamped to smaller values to reduce |Vmax| and improve
accuracy. The adopted quantization scheme is linear (i.e.
uniform intervals) with binary radix-point scaling.
Even though other quantization strategies may achieve higher
accuracy, their hardware implementation results less efficient.
For instance, an asymmetric method, e.g. [19], requires ad-
ditional output pipeline stages that affect performance as
demonstrated in [27], while floating-point scaling makes use
of data-type conversions that reduce to simple shift operation
with binary scaling. For the specific case of PyD-Net, our
quantization strategy achieves almost the same accuracy of
floating-point, making other complex schemes irrelevant.
We adopted a dynamic fixed-point scheme where the fraction
length is defined layer-by-layer. More specifically, the opti-
mization procedure aims at finding the FLopt that minimizes
the L2 distance between the original 32-bit floating point
values X and the quantized values Q. Applied to both activa-
tions and weights independently, the procedure encompasses
the following stages. First, a range analysis of weights and
activations distribution; for the latter case, a subset of the
training set is used (referred as calibration set).

>>>>

B
16-bit x 4

Bit-Extension

B’

32-bit x 4

32-bit x 2

A’00

64-bit x 2

S’

64-bit x 2 64-bit x 2

Narrowing
w/ Saturation

S01

16-bit x 2
1 2 3 4

32-bit

B’00

B00

S’01

S’01
S’ S’

S

loop

S’00

S’00S’01S’00

S00

B’00
B03

B’01 B’02 B’03

B’01

Fig. 4. Q.Neural-Kernel: execution flow for 16-bit fixed-point.

Second, extraction of lower-bound and upper-bound of the
fraction length: FLlb, FLub. Both are calculated with Eq.
IV-A using the different Vmax as follows:

Vmax =

{
max(|Xmin|), |Xmax|) for FLlb

max(|Xmin|), |Xmax|)/K for FLub

(3)

with K an arbitrary large integer1. Third, repeated test using
the available FL ∈ [FLmin, FLmax] and selection of FLopt,
i.e. the one that minimizes the L2 error. Half-even rounding
is used for the quantization of trainable parameters.

B. Fixed-Point Convolution Kernels for the ARMv7

The belief that fixed-point representations reduce energy con-
sumption due to less complex arithmetic is not exactly true.
The actual benefit lies in the ability to store the same amount
of information with fewer bits which in turn enables a more
efficient use of the memory bandwidth [21]. However, quanti-
zation alone isn’t much use. It requires a smart orchestration
of the hardware processing units in order to keep pace with
the higher throughput brought with bit-width scaling.
The NEON Media Processing Engine of the ARMv7-A ar-
chitecture has an advanced arithmetic SIMD unit with paral-
lel floating-point and integer units. The register file can be
configured to host 8-, 16-, 32-, 64-, 128-bit data, while the
integer data-path supports 8-, 16-, 32- or 64-bit operations.
To explain the implemented kernel routine we resort to the
example of Fig. 4, which gives a sketch of the convolution
S of two matrices A and B, with B as the N × N kernel
of a generic layer and A the input feature. More precisely,
it illustrates the parallel calculation of two outputs S00 and
S01. In general, Sij =

∑N×N
x Aix · Bxj . The example is for

16-bit fixed-point; the same holds for 8-bit, yet with doubled
parallelism. The flow is as follows:
(1) the 16-bit (8-bit) input operands, Ai,x and Bx,j are
extended to 32-bit (16-bit) obtaining A′i,x and B′x,j (Fig. 4
refers to Bx,j only).
(2) two (four) fused multiply& accumulate (MAC) operations
are executed in parallel; the result is stored into a 64-bit (32-
bit) register S′i,j
(3) after N×N loops, the two (four) results are ready to be
packed and then stored in the main memory; an output pro-
cessing stage (highlighted in orange) is in charge of the radix-
point shifting according to the desired radix-point position.
(4) the result is shrunk to the original bit-width, i.e. 16-bit
(8-bit), and eventually saturated.

1We empirically verified K=100 is an optimal choice for PyD-Net

The bit-extension of step (1) guarantees 32- (16-) guard-
bits for the accumulation. This operation is paramount as
it avoids overflow/underflow during accumulation. Bypassing
this stage may achieve twice the parallelism, but results are
highly inaccurate. Overall, the number of parallel MAC is 2
for 16-bit and 4 for 8-bit. Further improvements are limited
by the maximum bit-width of the register file: 128-bit. To
notice that the parallelism of FP32 is 4. Contrary to what
is thought, floating-point is intrinsically more efficient as it
makes better use of the local registers. Also, it does not
require the additional output stage steps ((3) and (4) in Fig. 4).
Despite that, the performance of fixed-point convolutional
networks improve over FP32. This is due to the following
factors: (i) enhanced utilization of memory bandwidth, as the
cost of accessing 16-bit (8-bit) data is half (quarter) the cost
of floating-point; (ii) smaller memory footprint for storing
weights and partial results, hence less RAM usage, (iii) higher
hit-rate in cache. This analysis is confirmed by experimental
evidence.

V. RESULTS

A. Experimental set-up

PyD-Net and dataset. PyD-Net infers disparity maps at
different resolutions thus enabling accuracy-effort scaling.
The three options available, i.e. H, Q and E, have been
explored for a parametric analysis of functional properties, i.e.
depth accuracy, and non-functional properties, i.e. binary and
RAM space, throughput and energy efficiency, under different
arithmetic precision, i.e. 32-bit floating-point (FP32), 16-bit
fixed-point (FX16) and 8-bit fixed-point (FX8). The baseline
is resolution H at FP32 (H@FP32).
KITTI raw [29] is the reference dataset in this field [1],
[7]. It collects 23297 images split, according to the standard
protocol proposed by Eigen et al. in [30], into a training-set
(22600 stereo pairs) and a test-set (697 images) with sparse
ground-truth labels. The disparity maps obtained through the
inference stage are transformed into depth maps following the
methodology introduced by [7]. The baseline and the starting
point of our work is the pre-trained PyD-Net model. It was
trained, as described in [1], for 200 epochs on batches of 8
images randomly picked from the training-set and resized to
512×256.
Front-end. The quantization stage encompasses a range analy-
sis of the activations in order to define the lower-/upper-bound
of the fraction-length. For this stage, we used a calibration set
filled with 5000 images randomly picked from the training-
set. To notice that the intersection between testing-set and the
calibration-set is void.
The fine-tuning stage (applied at post-quantization) consists of
25 training epochs made run over the full training-set using the
Adam optimizer. The hyper-parameters are as follows: learning
rate 1.0e-7, β1 = 0.9 and β2 = 0.999, weight decay = 0. The
loss function and its parameters are those described in [1]. The
flow is run on the NVIDIA Titan XP GPU with CUDA 8.0.
Back-end and hardware. The proposed GEMM-based
Q.Neural-Kernels are written in C++ and inline assembly code.

Lower is better Higher is better
Config. Abs Rel Sq Rel RMSE RMSE log a1 a2 a3

H@FP32 0.146 1.298 5.859 0.241 0.802 0.927 0.968
H@FX16 0.147 1.331 5.925 0.243 0.801 0.926 0.967

H@FX16-ft 0.147 1.302 5.945 0.244 0.798 0.925 0.967
H@FX8 0.177 1.893 6.621 0.272 0.768 0.911 0.958

H@FX8-ft 0.148 1.337 6.018 0.246 0.795 0.924 0.967
Q@FP32 0.149 1.350 6.128 0.246 0.795 0.923 0.966
Q@FX16 0.149 1.365 6.155 0.246 0.794 0.923 0.966

Q@FX16-ft 0.149 1.342 6.176 0.248 0.790 0.921 0.966
Q@FX8 0.183 2.364 7.457 0.270 0.766 0.908 0.957

Q@FX8-ft 0.158 1.427 6.290 0.257 0.778 0.917 0.964
E@FP32 0.162 1.699 7.141 0.266 0.768 0.907 0.959
E@FX16 0.165 1.770 7.327 0.271 0.762 0.904 0.957

E@FX16-ft 0.162 1.712 7.163 0.266 0.768 0.907 0.958
E@FX8 0.193 2.758 8.507 0.288 0.745 0.893 0.950

E@FX8-ft 0.171 1.829 7.430 0.276 0.751 0.901 0.956

TABLE I
EXPERIMENTAL RESULTS CONCERNING DEPTH ESTIMATION ACCURACY.
COMPARISON BETWEEN ORIGINAL PYDNET [1] (FP32) AND OPTIMIZED

ARCHITECTURES AT DIFFERENT RESOLUTIONS.

They are integrated into the ARM Compute Library version
18.05 built with scons ver. 2.4.1 and the gcc-linaro toolchain
ver. 6.4.0-2018.05. To notice that other existing libraries do not
support the dynamic fixed-point scheme adopted in this work.
The embedded platform used as test-bench is the Raspberry PI
3B loaded with a 32-bit Ubuntu Mate 16.04. The board hosts
a quad-core BCM2837 chip-set powered to 1.2V. The four
CPU cores, which belong to the ARMv8-A family, support
the ARMv7-A 32-bit instruction-set in backward compatibility
mode. The reason behind the adoption of the ARMv7 archi-
tecture lies in the possibility of using the depth estimation on a
wider range of systems, e.g. the older Raspberry PI 2, which
show lower power consumption. All the power-management
features were disabled during the experimental campaign; the
board drains 3.5W under full utilization (4 cores ON and
maximum workload); moving from FP32 to FX16 or FX8
has no effect on the total power consumption, dominated by
memory accesses.

B. Accuracy vs Quantization

Table I reports an evaluation of several variants of the original
PyD-Net architecture. We point out once more that the model
by Godard et al. [7], counting 15× parameters with respect to
PyD-Net (30 vs 1.9 million), is not suited for embedded de-
vices and not used as benchmark for non-functional properties
in the next section2. We discuss in detail the effects introduced
at each resolution (H, Q, E) by different data types (floating
point, 16 or 8 bit fixed point, referred to FP32, FX16 and FX8)
and optional fine-tuning (-ft) carried out after quantization,
reporting error and accuracy metrics commonly adopted for
evaluating depth-from-mono performance [30], assuming a
80m cap distance [7].
Looking at the table, one can notice a similar trend for the
three resolution H, Q, and E, for all the seven metrics. The
16-bit fixed-point quantization FX16 introduces a negligible
accuracy drop if compared to the original PyD-Net FP32. For
each of the three resolutions, the additional fine-tuning (-ft)
has a marginal impact on the performance; that’s due to the

2For the sake of space, please refer to [1] for a comparison with Godard et
al. [7]. For the same reason, parameters a1, a2 and a3 correspond, respectively,
to δ < 1.25, δ < 1.252 and δ < 1.253 in [1].

Fig. 5. Top row: Input image from KITTI dataset (left) and depth map
H@FP32 computed by the original PyD-Net network [1] (right). Bottom row:
depth maps H@FX16-ft (left) and H@FX8-ft (right).

fact that FX-16 is already very close to FP32. The 8-bit fixed-
point quantization FX8 is more prone to accuracy drop, with
substantial loss for Q and E. However, fine-tuning the network
dramatically improves performance, thus closing the gap with
FX16 quantization and, most notably, with the original FP32
strategy. These facts can also be perceived by Fig. 5.

C. Performance, Memory Space and Energy Efficiency

Table II collects the hardware-related metrics measured during
the test-run: memory space (for weights storage), RAM usage
(during PyD-Net processing) and energy efficiency (average
frames per J). The throughput (frames/second) can be derived
by multiplying energy efficiency (frames/J) by the total power
(3.5W).
As expected, energy efficiency improves when working at
lower resolutions: the upper depth estimators of the net are dis-
abled alleviating the workload (please refer to Section III). For
instance, using FP32 the improvement from high (H@FP32)
to low resolution is 5.64×. That’s the savings brought by
the reconfigurable topology of the PyD-Net. Considering the
same resolution, energy efficiency gets larger with smaller
data representations. For instance, at high resolution the gain
from H@FP32 to H@FX8 is 49%; at low resolution, the gain
grows up to 63.7%. To notice that, as previously outlined,
moving from floating-point to fixed-point affects accuracy
only marginally. The combined action of resolution scaling
and precision scaling enables even larger optimization: from
H@FP32 (0.141Frames/J) to E@FX8 (1.299Frames/J) the
energy efficiency increases by 9.23×.
This first analysis gives clear evidence of the scaling properties
of the quantized PyD-Net model, the benefits of multiple
precision arithmetic, and the effectiveness of the porting
flow on the target architecture. A sensing technology with
such ability to implement accuracy-energy scaling represents
a practical option for adaptive embedded systems: contexts
or applications which tolerate lower accuracy might pursue
higher energy efficiency by tuning resolution (coarse-knob)
and precision (fine-knob).
Concerning memory, both the binary space and the RAM
usage are important metrics that reflect the efficiency of the
proposed implementation. As expected, the space for storing
network parameters reduces linearly with the precision, e.g.
from 7.6MB with H@FP32 to 1.9MB with H@FX8. At
low resolution and low precision the memory space is just
1.7MB (E@FX8), which brings the overall savings w.r.t.

Resolution Precision Space (MB) RAM (MB) Frame/J

H
FP32 7.6 206 0.141 (×1.00)
FX16 3.8 118 0.156 (×1.11)
FX8 1.9 62 0.210 (×1.49)

Q
FP32 7.2 60 0.386 (×2.74)
FX16 3.6 34 0.420 (×2.99)
FX8 1.8 19 0.635 (×4.51)

E
FP32 6.8 53 0.794 (×5.64)
FX16 3.4 28 0.922 (×6.55)
FX8 1.7 14 1.299 (×9.23)

TABLE II
NON-FUNCTIONAL METRICS OF PYD-NET AT DIFFERENT RESOLUTIONS

AND PRECISIONS ON ARMV7-A

H@FP32 up to ×4.5. Even more interesting is the analysis
of the RAM. Its utilization is dramatically reduced with an
overall scaling factor of 14.7×: from H@FP32 (206MB) to
E@FX8 (14MB). Indeed, the same PyD-Net compiled using
prior kernels available in the ACL library showed fixed-point
implementations are more resource hungry than floating-point.
As a final remark, Fig. 6 provides a technology comparison
among different hardware options: a GPU (Titan X Maxwell),
a high-end CPU (Intel i7-6700K CPU), and the ARMv7
at FP32, FX8 and FX16. The bar chart shows the energy
efficiency (Frames/J) for all the possible permutation of
resolution, precision and hardware; the labels refer to the
normalization w.r.t. high resolution (H) for each hardware
option separately. Moving from H to E with the ARMv7@FX8
improves energy by 6.2×. To notice that ARMv7@FX16 and
ARMv7@FX8 outperform both the GPU and CPU by far.
A more interesting aspect the lower the arithmetic precision,
the larger the gain brought by resolution scaling. While in
GPU and CPU the gain from H to E is limited to ×2.5 and
×4 respectively, it grows to 5.6× with the ARMv7@FP32
and 6.2× with the ARMv7@FX8. This feature might open
interesting optimization problems for resource management at
run-time.

VI. CONCLUSIONS

This work introduces a comprehensive design&optimization
framework aimed at improving the energy efficiency of depth
perception on low power embedded devices. The target is
the ARMv7, a RISC architecture widely adopted for low-
cost systems. Compared to a high-end CPU (Intel i7) and a
GPU (NVIDIA Titan X), the proposed implementation reaches
higher energy efficiency with a negligible accuracy degrada-
tion that is tolerable by many embedded applications. More
interestingly, the joint co-operation between (i) the design of
the tiny, yet reconfigurable PyD-Net and (ii) the optimiza-
tion enabled by the hardware-friendly fixed-point quantization
allows achieving a scalability that goes beyond the state-of-
the-art. These features pave the way to a widespread deploy-
ment of adaptive energy-accuracy monocular 3D sensing in
additional application domains constrained by stringent energy
requirements.

REFERENCES

[1] M. Poggi et al., “Towards real-time unsupervised monocular depth
estimation on cpu,” in IROS, 2018.

GPU CPU ARMv7-A
FP32

ARMv7-A
FX16

ARMv7-A
FX8

0.00

0.20

0.40

0.60

0.80

1.00

1.20

F
ra
m
e
s
/J

x1.0

x1.0
x1.0 x1.0

x1.0

x1.8

x2.4

x2.8 x2.6

x3.0

x2.5

x4.1

x5.6

x5.8

x6.2
H Q E

Fig. 6. Energy efficiency vs. Resolution using GPU, CPU and the ARMv7-A.

[2] L. Ladicky et al., “Pulling things out of perspective,” in CVPR, 2014.
[3] K. Karsch et al., “Depth transfer: Depth extraction from video using

non-parametric sampling.” PAMI, vol. 36, no. 11, pp. 2144–2158, 2014.
[4] H. Fu et al., “Deep ordinal regression network for monocular depth

estimation,” in CVPR, 2018.
[5] Y. Luo et al., “Single view stereo matching,” in CVPR, 2018.
[6] R. Garg et al., “Unsupervised cnn for single view depth estimation:

Geometry to the rescue,” in ECCV, 2016.
[7] C. Godard et al., “Unsupervised monocular depth estimation with left-

right consistency,” in CVPR, 2017.
[8] M. Jaderberg et al., “Spatial transformer networks,” in NIPS, 2015.
[9] Z. Wang et al., “Image quality assessment: From error visibility to

structural similarity,” Trans. Img. Proc., vol. 13, no. 4, pp. 600–612,
Apr. 2004.

[10] M. Poggi et al., “Learning monocular depth estimation with unsuper-
vised trinocular assumptions,” in 3DV, 2018.

[11] F. Aleotti et al., “Generative adversarial networks for unsupervised
monocular depth prediction,” in 3DRW, 2018.

[12] Y. Kuznietsov et al., “Semi-supervised deep learning for monocular
depth map prediction,” in CVPR, 2017.

[13] N. Young et al., “Deep virtual stereo odometry: Leveraging deep depth
prediction for monocular direct sparse odometry,” in ECCV, 2018.

[14] H. Zhan et al., “Unsupervised learning of monocular depth estimation
and visual odometry with deep feature reconstruction,” in CVPR, 2018.

[15] Z. Yin et al., “Geonet: Unsupervised learning of dense depth, optical
flow and camera pose,” in CVPR, 2018.

[16] R. Mahjourian et al., “Unsupervised learning of depth and ego-motion
from monocular video using 3d geometric constraints,” in CVPR, 2018.

[17] J. Qiu et al., “Going deeper with embedded fpga platform for convolu-
tional neural network,” in FPGA. ACM, 2016, pp. 26–35.

[18] B. Moons et al., “Energy-efficient convnets through approximate com-
puting,” in WACV, 2016.

[19] B. Jacob et al., “Quantization and training of neural net-
works for efficient integer-arithmetic-only inference,” arXiv preprint
arXiv:1712.05877, 2017.

[20] H. Gao et al., “Ifq-net: Integrated fixed-point quantization networks for
embedded vision,” in CVPR, 2018.

[21] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329,
2017.

[22] S. Gupta et al., “Deep learning with limited numerical precision,” in
ICML, 2015.

[23] V. Peluso et al., “Scalable-effort convnets for multilevel classification,”
in ICCAD. ACM, 2018, pp. 12:1–12:8.

[24] T. Na et al., “Speeding up convolutional neural network training
with dynamic precision scaling and flexible multiplier-accumulator,” in
ISLPED, 2016.

[25] L. Shan et al., A Dynamic Multi-precision Fixed-Point Data Quantiza-
tion Strategy for Convolutional Neural Network. Singapore: Springer
Singapore, 2016, pp. 102–111.

[26] Compute library. [Online]. Available:
https://developer.arm.com/technologies/compute-library

[27] D. Sun et al., “Enabling embedded inference engine with ARM
compute library: A case study,” CoRR, vol. abs/1704.03751, 2017.
[Online]. Available: http://arxiv.org/abs/1704.03751

[28] Linaro - leading software collaboration in the arm ecosystem. [Online].
Available: https://www.linaro.org/

[29] A. Geiger et al., “Vision meets robotics: The kitti dataset,” IJRR, 2013.
[30] D. Eigen et al., “Depth map prediction from a single image using a

multi-scale deep network,” in NIPS, 2014.

