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Abstract. Depth estimation for dynamic scenes is a challenging and rel-
evant problem in computer vision. Although this problem can be tackled
by means of ToF cameras or stereo vision systems, each of the two sys-
tems alone has its own limitations. In this paper a framework for the
fusion of 3D data produced by a ToF camera and a stereo vision sys-
tem is proposed. Initially, depth data acquired by the ToF camera are
up-sampled to the spatial resolution of the stereo vision images by a
novel up-sampling algorithm based on image segmentation and bilateral
filtering. In parallel a dense disparity field is obtained by a stereo vision
algorithm. Finally, the up-sampled ToF depth data and the disparity
field provided by stereo vision are synergically fused by enforcing the lo-
cal consistency of depth data. The depth information obtained with the
proposed framework is characterized by the high resolution of the stereo
vision system and by an improved accuracy with respect to the one pro-
duced by both subsystems. Experimental results clearly show how the
proposed method is able to outperform the compared fusion algorithms.

1 Introduction

Depth estimation for dynamic scenes is a challenging computer vision problem.
Many solutions have been proposed for this problem including stereo vision sys-
tems, Time-of-Flight (ToF) cameras and light-coded cameras (such as Microsoft
Kinect). Concerning stereo vision systems, in spite of the fact that recent research
[1] in this field has greatly improved the quality of the estimated geometry, re-
sults are yet not completely satisfactory specially when the texture information
in the scene is limited. The introduction of Time-of-Flight cameras and of light-
coded cameras (e.g., Microsoft Kinect) is more recent. These systems are able
to robustly estimate in real time the 3D geometry of the scene but they also
have some limitations like low spatial resolution, the inability to deal with low
reflective surfaces, and the high level of noise in their measurements.

The characteristics of ToF and stereo data are somehow complementary,
therefore the problem of their fusion has attracted a lot of interest in the last
years. The overall goal of ToF and stereo data fusion is to combine the infor-
mation of a ToF camera and a stereo system in order to obtain an improved
3D geometry that combines the best features of both subsystems, such as high
resolution, high accuracy and robustness with respect to different scenes. The
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first attempt to combine a low resolution ToF range camera with a high resolu-
tion color camera in order to provide an high resolution depth map is presented
in [2], where the authors adopt a Markov Random Field (MRF) approach. A
considerably wide class of methods proposed in order to solve this problem is
based on the bilateral filter [3], e.g. in [4] an approach based on bilateral filtering
is proposed where the input depth map is used in order to build a 3D volume
of depth probability (cost volume). The method of [4] can also be generalized to
the case of two color cameras instead of only one. The approach of [5] is differ-
ent from the other methods, because it explicitly imposes that range and color
discontinuities are aligned.

Another approach is the synergic fusion of data from a ToF with two color
cameras, i.e., a stereo vision system. A first approach to this problem is [6],
in which the depth map acquired by the ToF and the depth map acquired by
the stereo pair are separately obtained and averaged. Another approach was
proposed in [7] where the depth map acquired by the ToF is reprojected on
the reference image of the stereo pair, it is then interpolated and finally used
as initialization for the application of a stereo vision algorithm. In [8] after the
upsampling of the depth map acquired by the ToF by a hierarchical application
of bilateral filtering, the authors apply a plane-sweeping stereo algorithm and
finally a confidence based strategy is used for data fusion. In [9] the final depth
map is recovered from the one acquired by the ToF and the one estimated
with the stereo vision system by performing a MAP local optimization in order
to increase the accuracy of the depth measurements. The method proposed in
[10] is instead based on a global MAP-MRF framework solved by means of
belief propagation. An extension of this method that takes into account also the
reliability of the data acquired by the two systems has been proposed in [11].

In this paper a method for the fusion of data coming from a stereo system and
a ToF camera is proposed. The framework is constituted by 3 different steps: in
the first step, the depth data acquired by the ToF camera are up-sampled to the
spatial resolution of the stereo vision images by a novel up-sampling algorithm
based on image segmentation and bilateral filtering. Then in the next step (that
can be performed in parallel) a dense disparity field is obtained by means of
a stereo vision algorithm. Finally in the third step the up-sampled ToF depth
data and the stereo vision output are synergically fused by extending the Local
Consistency (LC) approach [12].

Furthermore, even if in this paper the fusion of the data coming from a ToF
camera and a stereo pair is considered, the proposed approach can be applied
to other active depth sensors such as the Microsoft Kinect.

2 Proposed Method

As previously stated, the considered acquisition system is composed of a ToF
range camera and a stereo system. The two acquisition systems are jointly cali-
brated by means of the method proposed in [9]. The adopted calibration proce-
dure firstly requires to calibrate and rectify the stereo pair. The intrinsic param-
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eters of the ToF sensor are then estimated and finally the extrinsic calibration
parameters between the two systems are estimated by the closed-form technique
adopted in [9]. Once the overall 3D acquisition system is calibrated, it is possi-
ble to reproject the ToF depth measurements to the stereo pair reference frame.
Note how the setup is built in order to have a similar field of view for both the
systems and the algorithm is applied on the region framed by both devices. The
proposed algorithm is divided into 3 different steps:

1. Computation of a high resolution depth-map from the ToF data by reprojec-
tion of the low resolution depth measurements acquired by the ToF camera
into the lattice associated with the left camera and interpolation of the vis-
ible points only (up-sampling step).

2. Computation of a high resolution depth-map by applying a stereo vision
algorithm on the rectified images acquired by the stereo pair.

3. Locally consistent fusion of depth measurements obtained by the stereo vi-
sion algorithm and the up-sampled version of the data obtained by the ToF
sensor by means of an extended version of the LC technique [12].

In the rest of this section we will describe the steps 1 and 3, while for the second
step we employed a standard stereo vision method from the literature (e.g. [13]).

3 Up-sampling of ToF data

In this work the sparse disparity measurements are interpolated by a novel inter-
polation method that exploits both segmentation and bilateral filtering in order
to obtain better results. This allows to combine the good edge preserving qual-
ity of the segmentation-based methods and the good robustness of the bilateral
filter. The first step of the proposed method consists in the reprojection of the
low resolution depth measurements acquired by the ToF camera into the lattice
associated with the left camera and the interpolation of the visible points only, in
order to obtain an high resolution depth map. In order to accomplish this step,
all the 3D points PT

i , i = 1, ..., n acquired by the ToF camera are first projected
onto the left camera lattice Λl (excluding the ones that are not visible from the
left camera point of view) thus obtaining a set of samples pi, i = 1, ..., n over
the left camera lattice. Note how the n samples acquired by the ToF camera
cover only a small subset of the N samples of the lattice Λl = pj , j = 1, ..., N
associated to the high resolution color camera. The data acquired by the ToF
camera allow to associate to each non-occluded acquired sample pi a depth value
zi, i = 1, ..., n that can be mapped to a disparity value di, i = 1, ..., n by the well
known relationship di = bf/zi (where b is the baseline and f is the focal length
of the rectified stereo system). This procedure makes available a set of sparse
disparity measurements on the lattice associated to the left camera of the stereo
pair, as shown in Fig. 1.

The goal of the proposed interpolation method is to associate to all the points
of the lattice Λl a disparity value d̃j , j = 1, ..., N . In order to accomplish this,
the color image acquired by the left camera is first segmented using the method
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a) b)

Fig. 1. Example of sparse disparity measurements: a) cropped color image framing the
acquired scene; b) disparity data acquired by the ToF camera reprojected on the lattice
associated to the left camera (the depth map acquired by the ToF camera is shown in
the upper left corner at its original size).

based on mean-shift clustering proposed in [14] thus obtaining a segmentation
map S(pj), j = 1, ..., N that maps each point of Λl to the corresponding region.
In the following step a window Wj of size w × w centered on each of the pj
samples that does not have a disparity value already available is considered for
the computation of the estimated disparity value d̃j . The samples that already
have a disparity value from the ToF measures will instead just take that value.
The set of points inside the window can be denoted with pj,k, k = 1, ..., w2 and
finally W ′

j ⊂ Wj is the set of the points pi,k ∈ Wj with an associated disparity
value di. In standard bilateral filtering [3] the interpolated disparity of point pj is
computed as the weighted average of the disparity values inW ′

j where the weights
are computed by exploiting both a weighting function in the spatial domain and
one in the range domain. In the proposed approach we employ a standard 2D
Gaussian function as in [3] for the spatial domain weighting function fs(pi,k, pj).
The range domain function fc(pi,k, pj) is also a Gaussian function but it is not
computed on the depth itself, but instead we computed it on the color difference
in the CIELab space between the two samples. Furthermore, in order to exploit
segmentation information to improve the performance of the bilateral filter, also
a third indicator function Isegm(pi,k, pj) defined as:

Isegm(pi,k, pj) =

{
1 if S(pi,k) = S(pj)
0 if S(pi,k) 6= S(pj)

(1)

is introduced. The interpolated depth values are finally computed as:

d̃js=
∑
W ′

j

[fs(pi,k, pj)Isegm(pi,k, pj)di,k + (2)

fs(pi,k, pj)fc(pi,k, pj)(1− Isegm(pi,k, pj))di,k]

Note how the proposed interpolation scheme acts as a standard low-pass in-
terpolation filter inside each segmented region while samples that are outside the
region are weighted on the basis of both the spatial and range weighting func-
tions thus getting a lower weight, specially if their color is also different from the
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one of the considered sample. The output of the interpolation method is a dispar-
ity map Dt,s defined on the lattice Λl. The proposed scheme offers an attractive
novel up-sampling method because it couples the precision of segmentation-based
methods [5] with the edge-preserving noise reduction capability of bilateral filter
weighting [15]. Moreover, since the proposed method does not only take into
account the samples inside the regions, this approach is also robust with respect
to segmentation artifacts. Fig. 2 shows an example of the results of the proposed
approach and compares it with [15] and [5].

Garro et al. Proposed method Kopf et al. 

Fig. 2. Example of disparity measurements acquired by the ToF camera up-sampled
to the lattice associated to the left camera. The full disparity is obtained by applying
the proposed up-sampling method. In the zoomed pictures, there is a comparison of
the results obtained applying the proposed method (green marker), the segmentation-
based approach of [5] (blue marker) and the direct application of bilateral filtering as
proposed in [15] (yellow marker).

4 Fusion of stereo and ToF disparity

After interpolating the ToF data, an additional high resolution disparity map
Ds on lattice Λl can be inferred by means of stereo vision. Any stereo vision
algorithm is potentially suited to extract the disparity map Ds, but for our ex-
periments we adopted the Semi Global Matching (SGM) algorithm proposed in
[13]. Given the depth maps provided by an active ToF camera and a passive
stereo vision system we aim at combining the potentially multiple range hy-
potheses available for each point by means of a technique that enables to obtain
a locally consistent depth field. Our method extends the Locally Consistent tech-
nique (LC) [12] proposed for stereo matching so as to deal with the (potentially)
two disparity hypotheses available with our setup.

Given a disparity field provided by a stereo algorithm, the original LC tech-
nique3 enabled to improve the overall accuracy by propagating, within a patch
referred to as active support centered on each point f of the initial disparity field,
the plausibility of the same disparity assignment made for the central point to

3 A detailed description of the LC technique can be found in [12].
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any other point within the active support. Specifically, the cues deployed by LC
to propagate the plausibility within the active support centered in f at a given
disparity hypothesis d(f) are the color intensity of each point in the reference
and the target image with respect to the corresponding central point of the active
support, the matching cost for the assumed disparity hypothesis and a prior con-
straint related to the Euclidean distance of the examined point with respect to
the center f of the active support. Therefore, after propagating this information,
the overall plausibility of each disparity hypothesis is given by the amount of
plausibility for the same disparity hypothesis received from neighboring points.

In this paper, we extend the LC approach in order to deal with the multiple
input range fields provided by the active and the passive range measurement
available in our setup. It is worth noting that, in this circumstance, for each
point of the input image we can have 0 (both sensors don’t have a potentially
valid range measurement), 1 (only one of the two sensors provides a potentially
valid range measurement) or 2 disparity hypotheses (both sensors provide a
potentially, yet not necessarily equal, valid range measurement). Our method, for
each point of the reference image with at least one range measurement computes,
within an active support of size 39× 39 and with the same strategy proposed in
[12], the plausibility originated by each valid range sensor and propagates this
potentially multiple plausibility to neighboring points that falls within the active
support. Therefore, with this strategy, in the optimal case (i.e. when both range
measurements for the examined point f are available) we are able to propagate
within 39×39 neighboring points the plausibility of the two disparity hypotheses
originated by both sensors in f . On the other hand, when only a single sensor
provides a valid range measurement for f we propagate its plausibility to 39×39
neighboring points according to the unique valid hypothesis available. Finally,
when the point f under examination has not a valid range measurement we do
not propagate any plausibility at all towards neighboring points. Nevertheless,
it is worth observing that in this latter case, as well as in the other two former
scenarios, one point receives several plausibilities from neighboring points if there
are neighboring points (i.e. valid range measurements provided by ToF or stereo
vision) within the size of the active support that propagated the plausibility
of their disparity hypotheses. In most cases the depicted scenario is verified in
practice. Once accumulated, the overall plausibility for each point incoming from
neighboring points according to the described strategy, for each point and for
each hypothesis, we cross-check and normalize the overall plausibility. Finally, we
select for each point by means of a simple winner-takes-all strategy the disparity
hypothesis with the highest overall plausibility.

The proposed fusion approach implicitly addresses the complementary na-
ture of the two sensors. In fact, in uniformly textured regions, where the stereo
range sensing is quite inaccurate (and partially filtered-out, in our experiments,
enforcing the left-right consistency check), our approach propagates only plau-
sibility originated by the ToF camera. Conversely, in regions where the ToF
camera does not provide reliable information (e.g. dark objects) we propagate
the plausibility of the disparity hypotheses provided by the stereo sensor. Of
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course, in regions with both range measurements we propagate the plausibility
originated by both sensors.

5 Experimental Results

In order to evaluate the performance of the proposed algorithm we used an
acquisition system made by a Mesa SwissRanger SR4000 ToF range camera
with a resolution of 176× 144 pixels and by two Basler scA1000 video cameras
(with a resolution of 1032× 778 pixels) synchronized in hardware with the ToF
camera. Such a system can collect data at about 15 fps in a synchronized way, so
there is no need for non-synchronized methods, such as the one proposed in [16].
The system was calibrated with the method proposed in [9], and we obtained a
3D reprojection error of about 5mm on the joint stereo and ToF calibration.

To test the proposed framework we acquired several different scenes. For
space constraints we report here the results on three sample scenes only. Fig. 3
reports the results, note how the 3 scenes contains regions with different proper-
ties: e.g. scene a) and scene c) have a uniform background that is quite critical
for stereo vision systems due to the lack of texture information (and in fact in
row 4 many missing areas are visible) while scene b) has a texture pattern also
on the background. For each of the acquired scenes, an accurate disparity map
has been obtained by acquiring 600 images and processing them with an active
space-time stereo system [17] that has been considered as the ground-truth. The
estimated disparity map with the interpolated data from the ToF measurements,
the disparity map estimated with the SGM stereo vision algorithm and the dis-
parity map obtained at the end of the proposed data fusion algorithm have been
compared with the ground-truth disparity map and with other state of the art
methods.

Disparity map MSE Scene a) MSE Scene b) MSE Scene c) Average MSE

Proposed (ToF Interp.) 7.60 10.98 7.08 8.56

SGM stereo [13] 17.79 38.10 86.36 47.42

Proposed (ToF+Stereo) 3.76 6.56 8.69 6.34

Kopf et al. [15] 14.98 27.69 13.19 21.95

Garro et al. [5] 13.07 27.91 12.95 18.36

Yang et al. [4] 15.18 28.12 15.72 19.67

Table 1. MSE with respect to the ground truth: (first row) for the interpolated dis-
parity map from the ToF depth measurements, (second row) for the disparity map
calculated with the SGM stereo vision algorithm, (third row) for the final disparity
map calculated after the data fusion, (fourth row) for the application of method [15],
(fifth row) for the application of method [5] and (sixth row) for the application of
method [4]. All the MSEs calculated for scene a), scene b) and scene c) are reported
in the first three columns of the table. In the last column, the average MSE on the
three scenes is reported. The MSE has been calculated only on non-occluded pixels for
which a ground-truth disparity value is available.
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The average mean-squared-errors (MSE) have been calculated for each of the
three estimated disparity maps on each scene, and the results are reported in
Table 1. In the table the proposed framework is also compared with the state-
of-the-art methods of [15], of [5] and of [4]. In the last column of the table the
average MSE of the estimated disparity maps on the three different scenes is also
reported. From the MSE values on the three different scenes, it is immediate to
notice how the proposed framework is capable of providing more accurate results
than the interpolated ToF data and the stereo measurements. The results are
also significantly better than the compared state-of-the-art methods on all the
considered scenes. While concerning scene a) and b) it is immediately clear how
the proposed method provides the best results, in scene c) it is the interpolation
of the ToF measurements with the proposed method that provides the minimum
MSE. This is due to the fact that this planar scene with a very limited amount of
texture constitutes a simple case for the ToF depth measurements and a difficult
case for stereo algorithms. This fact is reflected also on the high MSE value of the
stereo vision system alone. However, as soon as a more complex scene geometry
is considered (e.g., the puppet in scene a)) the results of the proposed fusion
framework are superior to the single application of the interpolation algorithm
on the ToF disparity measurements. In presence of more texture information
(e.g., scene b)) the contribution of the stereo is relevant, and the final results
of the data fusion algorithm halves the MSE if compared with the application
of the interpolation algorithm on ToF data alone. Note also how the proposed
method not only provides a lower MSE than the approaches of [15], [5] and
[4], but also the improvement is very large in scenes a) and b) where both
the stereo system and the ToF camera provides accurate information. This is
a clear hint of the fact that the fusion algorithm is able to combine efficiently
the two information sources. More detailed results are available in the additional
material. All the datasets used in this paper are available at the following url :
http://lttm.dei.unipd.it/downloads/tofstereo .

The current implementation is not fully optimized and takes about 50 sec-
onds. Nevertheless each component of the overall proposed method is well suited
for a real-time GPU implementation. The current bottleneck is the local consis-
tency data fusion step, that takes about 40sec.

6 Conclusions and future work

This paper presents a novel method for the synergic fusion of 3D measurements
taken from two heterogeneous 3D acquisition systems in order to combine the
advantages of both systems. There are two main contributions introduced in this
paper. The first is a novel super-resolution method used as interpolation tech-
nique to up-sample the active sensor data that is able to combine precision near
discontinuities, robustness against segmentation artifacts and edge preserving
noise reduction. The second is the adoption of the local consistency framework
in the context of heterogeneous sensors data fusion, i.e. an active sensor and a
stereo vision system. The interpolation technique for the up-sampling of the ac-
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3)

4)
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7)
a) b) c)

Fig. 3. Results of the proposed fusion framework. The columns correspond to the three
different datasets on which the algorithm has been tested. Rows: 1) Cropped left image
acquired by the left camera of the stereo pair; 2) Sparse disparity data acquired by
the ToF camera and mapped on the left camera lattice (cropped); 3) Interpolated
disparity map acquired by the ToF camera with the proposed interpolation framework
(cropped); 4)Disparity map calculated with the SGM stereo vision algorithm (cropped);
5) Proposed locally consistent disparity map calculated from both ToF and stereo data
(cropped); 6) Ground truth disparity map (cropped); 7) Difference between the final
disparity map of row 5 and the ground truth (cropped). All the images have been
cropped in order to account only for the pixels for which the ground truth disparity
values are present. Green pixels in the last row correspond to points that have been
ignored because occluded or because a ground truth disparity value is not available. In
order to make the errors visible, the magnitude of the disparity errors (shown in red)
have been multiplied by 10 in the images of the last row.
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tive sensor data is “per se”a novel super resolution method capable to provide an
high resolution depth map, very precise and robust with respect to errors in the
depth measurements of both the active sensor and the stereo pair. The results
obtained by the application of the proposed overall framework are always better
than the results of the application of the compared methods. Even though the
method in this work is exemplified on an acquisition system made by a stereo
pair and a ToF camera, we are considering its extension to different scenarios,
e.g., to the case of a stereo pair and a structured light camera (e.g. Microsoft
Kinect).
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