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Abstract

Inferring dense depth from stereo is crucial for several
computer vision applications and Semi Global Matching
(SGM) is often the preferred choice due to its good trade-
off between accuracy and computation requirements. Nevy-
ertheless, it suffers of two major issues: streaking arti-
facts caused by the Scanline Optimization (SO) approach,
at the core of this algorithm, may lead to inaccurate results
and the high memory footprint that may become prohibitive
with high resolution images or devices with constrained re-
sources. In this paper, we propose a smart scanline aggre-
gation approach for SGM aimed at dealing with both issues.
In particular, the contribution of this paper is threefold: i)
leveraging on machine learning, proposes a novel general-
purpose confidence measure suited for any for stereo al-
gorithm, based on O(1) features, that outperforms state-
of-the-art ii) taking advantage of this confidence measure
proposes a smart aggregation strategy for SGM enabling
significant improvements with a very small overhead iii) the
overall strategy drastically reduces the memory footprint of
SGM and, at the same time, improves its effectiveness and
execution time. We provide extensive experimental results,
including a cross-validation with multiple datasets (KITTI
2012, KITTI 2015 and Middlebury 2014).

1. Introduction

Stereo is a well-known technique to infer dense depth
data from two or more images and several approaches have
been proposed to deal with this problem. However, ac-
curacy in challenging conditions still remains an open re-
search issue. This fact has been clearly emphasized with
recent datasets [9, 20, 25] made of scenes acquired in re-
alistic and difficult environments. While some pitfalls are
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intrinsically related to the stereo setup, such as occlusions
[6] and distinctiveness [19], others, such as low signal-to-
noise ratio and untextured regions, typically occur in chal-
lenging environmental conditions characterized by poor il-
lumination, reflective surfaces and so on. In practical appli-
cations, it is also important to effectively detect unreliable
depth measurements by means of a point-wise confidence
measure that encodes the degree of uncertainty. Confidence
measures, extensively reviewed and evaluated in [16], are
computed according to different strategies based on analysis
of cost curves. Recently, some authors [10, 27, 21] showed
how machine learning frameworks can improve the reliabil-
ity of confidence measures. A common trend in these works
is the joint use of a pool of confidence measures to define a
feature vector, fed to a classifier (e.g., random forest (RF)),
that allows to improve their effectiveness with respect to
each of the considered individual measures.

Concerning stereo algorithms, the Semi Global Match-
ing (SGM) algorithm [12] has become very popular due to
its good trade-off between accuracy and computation re-
quirements. For this reason it has been implemented, ac-
cording to different strategies and simplifications, on al-
most any computing architecture. SGM relies on multi-
ple disparity optimization steps performed along different
paths, typically 8 or 16. Disparity optimization is per-
formed, by means of the Scanline Optimization (SO) [24]
algorithm, minimizing an energy function. Although SO is
very fast, disparity optimization on a 1D domain may lead
to well-known streaking artifacts. SGM partially attenuates
this problem by aggregating energy computed along differ-
ent paths and by selecting, by means of a winner-takes-all
(WTA) strategy, the disparity label with the minimum cost.

In this paper we take a deeper look at SGM with the
aim to improve its accuracy by softening the propagation
of streaking artifacts induced by SO. For this purpose, we
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Figure 1. Streaking detection step. (a) Disparity map obtained from path 0°, (b) streaking detection on path 0°, (c) disparity map obtained
from path 90°, (d) streaking detection on path 90°(c). Disparity maps a) and (c) are encoded with warmer colors for closer points and
colder colors for farther points. Confidence maps b) and d) depicts unreliable and reliable assignments, respectively, in red and green.

propose a framework based on an ensemble classifier (in
particular, RF) that allows us to obtain a very effective and
general-purpose confidence measure by processing features
extracted from a disparity map. Then, we apply our confi-
dence measure to the output of each single SO of SGM in
order to detect streaking and thus softening its effect when
aggregating costs from different paths.

In particular, focusing on SGM, we extract from the dis-
parity map obtained along each path, with a WTA strategy, a
pool of O(1) features processed by our framework to obtain
a confidence measure that encodes the degree of uncertainty
of each SO. The outcome of this analysis is then fed to a
smart aggregation step that, conversely from SGM, weights
each path according to the estimated uncertainty in order
to obtain a more accurate overall disparity map. We thor-
oughly evaluate effectiveness of our general-purpose confi-
dence measure as well as the disparity accuracy achieved
by our overall proposal, referred to as RF — SGM, on
KITTI 2012 [9]. Moreover, to avoid overfitting and to prove
that it can generalize its behavior to different scenes, we
cross-validated our method on KITTI 2015 [20] and Mid-
dlebury 2014 [25] performing training on eight stereo stereo
pairs from the KITTI 2012 dataset. In both evaluations, ex-
perimental results confirm that our proposal increases the
accuracy of the original SGM algorithm with a minimal
overhead and, by adopting appropriate strategy discussed
later, enables obtaining better results with a reduced exe-
cution time and at a fraction of the original memory foot-
print. Moreover, to validate our O(1) feature set, we com-
pare the performance of our proposal when fed with such
features and with the features proposed in [21]. This eval-
uation shows that our general-purpose confidence measure
outperforms state-of-the-art.

2. Related work

According to [24], stereo matching algorithms can be
categorized into two broad categories, local and global

methods. Both perform a subset of the following four steps:
1) matching cost computation 2) cost aggregation 3) dispar-
ity computation/optimization 4) disparity refinement. Local
methods [29, 14, 15, 5] typically focus on steps 1 and 2
while global methods [18] mostly on 1 and 3. Although
local method can be very fast, according to recent evalu-
ations on challenging datasets [9, 20, 25] they are clearly
outperformed by global methods. Among these latter ap-
proaches, a good trade-off between accuracy and execution
time is represented by the semi global method proposed by
Hirschmuller [12]. This strategy, described in details in the
next section, independently enforces on multiple paths, by
means of the SO algorithm [24], a smoothness constraint
and sums up the outcome of each one. The optimal disparity
is assigned according to a WTA strategy applied to the final
aggregated costs. This method, according to [9, 20, 25], is
adopted by most top-performing algorithms such as [30, 31]
and [3]. Moreover, original or variants of SGM have been
implemented on different computing architectures such as
GPUs [30, 31], FPGAs [1, 8] and other embedded devices.
A review and evaluation [2] of SGM variants based on mod-
ulation of the smoothing penalty according to image con-
tent highlights that, for structured environments, constant
penalty terms are appropriate. Spangenberg et al. proposed
weighted SGM aimed at weighting the costs of each each
path according to its compliance with the associated surface
normal [26]. A memory efficient, yet simplified, version of
SGM, referred to as eSGM, yielding almost equivalent error
rate with respect to the original algorithm has been proposed
in [13]. Finally, the MGM [7] algorithm aims at improving
the accuracy of SGM according to a more global strategy.

Concerning the cost computation step, extensively re-
viewed and evaluated in [ 1], non-parametric approaches,
such as the census transform, are often a preferred choice
due to their effectiveness [| | ]. More recently, some authors
proposed cost computation learned by means of Convolu-
tional Neural Networks (CNN). This strategy, turned out to
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Figure 2. Overview of the proposed streaking detection approach for two points of a disparity map obtained along path 0° by SO. For
each point, features are extracted from patches of increasing size (encoded with different shades of blue). The behaviors of the features
extracted on patches from size 5 X 5 (25) to size 11 x 11 (121) is reported on the right for the two points: one (top) belonging to an area

with streaking and one (bottom) within a region without streaking.

be very effective as reported in [30, 31] and [3].

Strictly related to stereo matching are confidence mea-
sures, reviewed and evaluated by Hu and Mordohai [16],
aimed at detecting unreliable disparity assignments by an-
alyzing the cost curve. It has been shown that, combining
multiple confidence measure by means of machine learning
approaches, yields to significant improvements [ 10, 27, 21].
In particular, the confidence measure proposed by Park et al.
[21], according to the methodology proposed in [16], out-
performs state-of-the-art. Reliable confidence measures can
be used to improve disparity accuracy by selecting reliable
ground control points [27] or by modulating matching costs
as proposed in [21]. Finally, machine learning has been de-
ployed also to combine multiple stereo algorithms with a
RF [28] and with a CNN [23].

3. Semi Global Matching

Semi Global Matching [12] represents a good trade-
off between accuracy and computational complexity and
for this reason it is very popular. Most of the top-
performing algorithms in the literature rely on such method
to obtain state-of-art results according to standard eval-
uation datasets [9, 20, 25]. For each pixel p, SGM
combines the outcome of multiple energy minimizations
computed by independent SO [24] algorithm on differ-
ent paths s € S, typically 8 or 16 according to [12].
For the 8 path version, referred to as SGMsg, the paths
S = {0°,45°,90°,135°, 180°, 225°,270°,315°} are de-
picted in Figure 1. Each SO, within the disparity range
[0, dynaz] and along each path s € S, performs for each
pixel p a disparity optimization according to the following
energy term FE(p, d),

E(p,d) = C(p, d)+min{ES(p’, d), E<(p',d—1)+P1,

E,(p',d+1)+ P1, min

ze 07 max

(B i) + P2>}

(Es(p',4)) (1)

— min
1€[0,dmaz]

where p’ represents the previous pixel along the path and
C(p, d) the point-wise or aggregated matching cost com-
puted, for each disparity d € [0, d;;q2], between reference
and target corresponding points along epipolar lines. Terms
P1 and P2 (P1 < P2) in (1) enforce smoothing by pe-
nalizing disparity variations along each path s. Accord-
ing to [11], among the many cost functions proposed for
stereo non-parametric approaches such as census perform
very well in challenging environments. Compared to global
approaches that enforce a smoothness term on a grid (i.e.,
2D domain) SO is less computational demanding. However,
it is well-know that it is prone to streaking artifacts along the
direction of the path. SGM softens this effect by summing
up, for each point p, the results yielded by multiple SO as
follows

E(p,d) = Ei(p,d) )

seS

and a selects the optimal disparity assignment according
to a WTA strategy. The SGM algorithm requires to store
the entire Disparity Space Image (DSI) [24] resulting in a
high memory footprint. Moreover, strategy (2) attenuates
streaking artifacts only partially. Our proposal aims at tack-
ling both issues by learning a smarter aggregation strategy
with respect to (2) driven by an analysis of the outcome of
the SOs computed along each path s € S.



4. Proposed method

In this paper, we introduce a novel step within the stereo
pipeline of the SGM algorithm to detect streaking artifacts
occurring on each path with the aim to soften their propaga-
tion in the final disparity map. Streaking detection for each
SO is carried out by means of a RF-based framework and
then used to weight, accordingly, the contribution brought
in by each scanline.

In this section, we introduce the feature vector adopted
for our streaking detection module and we discuss the im-
portance of the variables obtained through the training pro-
cess. Then, we introduce a smart scanline aggregation ap-
proach that takes into account such confidence values to re-
fine the final DSI.

4.1. Features extraction

We process a feature vector, through a RF framework, in
order to infer, for each pixel p and path s € .S, a value C,(p)
that encodes its degree of reliability (€ [0, 1]). Five cues are
computed on four patches of increasing size 2 = {5x 5, 7%
7,9 % 9,11 x 11} centered on p. By observing the behavior
of the streaking effect, which typically occurs near depth
discontinuities, we extract features that enable to encode the
statistical dispersion of disparity in the neighborhood of p.
We define H, IJ)V the histogram of disparity within patch N &€
Q centered in p, H. év (d) the amount of points at disparity d
within N, and the cardinality N as:

=2

= > HY(d) 3)

d€[07dm,az]

Given a patch N, centered on p, we extract the following
cues from the disparity map:

1. Disparity agreement (DA), encodes the number of
neighboring pixels with the same disparity of the cen-
tral point p:

DAY = H)(d(p)) 4)

A large amount of pixels sharing the same disparity
of p stands for a higher likelihood of correctness with
respect to circumstances where p has slighter support
from its neighbors.

2. Disparity scattering (DS), encodes how many different
disparity hypotheses appears in the neighborhood of p

> 1—6(HY(d),0)
d6[07d7nuz]
DSY = —lo - 5
P g ®)

where ¢ is Kronecker’s delta function (1 if HZ],V (d)
value is zero, 0 otherwise). According to such defi-
nition, a patch of N pixels in complete disagreement
with d(p) yields to a DS value equal to zero. The
lower the number of different hypotheses within the
patch, the higher the value of the DS score is.

3. Median disparity (MD)

MD} = median(H))) (6)

4. Variance of the disparity values (VAR),

1

VAR= =% (d(q) - u(p))* @)

N qeEN

with .
n(p) = i > d(g) ®)

geEN

5. Median deviation of disparity (MDD), as proposed in
[27, 21], which is the negative of the absolute differ-
ence between the disparity in p and the median dispar-
ity value in the patch N,

MDD = — | d(p) — MD(H)) | ©)

For each disparity map estimated by SO on path p, we
combine these 5 features at four scales N € () obtaining
the following features vector, fog = [f1, f2,- - -, f19, fQO]T.

By leveraging on a multi-scale approach, more infor-
mation is provided to the RF to identify potentially erro-
neous matches. In particular, in presence of a streaking,
with larger patches the magnitude of the features encod-
ing the statistical dispersion decreases. Figure 2 gives an
overview of the multi-scale approach described, emphasiz-
ing the different behavior of each feature and for each patch
size in two completely different circumstances (with streak-
ing, on top, and without streaking). It worth to note that
the proposed features can be computed in constant time ex-
ploiting O(1) techniques such as integral images for VAR
and histogram-based optimization techniques [22, 4, 17] for
DA, DS, MD and MDD. Compared to features extracted
analyzing the behavior of the cost curve [27, 21] with com-
plexity O(dymazx ) all our features are independent of the dis-
parity range as well as of the patch size and hence turn out
to be O(1).

We train an ensemble regression trees classifier that pro-
vides a confidence value C,(p) for each path. It is worth
observing that, according to the proposed strategy, we can
specialize the RF for each path s or we can train the RF



on multiple paths obtaining a more general RF suited for
any path. We’ll provide a detailed discussion of two strate-
gies, respectively referred to as multiple (M) and single, in
the experimental results section. Moreover, we point out
that the computation of the disparity map for each s € S
required by our approach introduces a negligible overhead
being, substantially, the outcome of SO.

Finally, differently from [21], we do not consider false
positives, false negatives, true positive and true negatives to
rescale our confidence, in order to maintain the gap between
lower and higher values. In fact, during the experimental
evaluation we tested either raw and rescaled values, obtain-
ing no substantial difference between the two approaches.
Moreover, the former strategy allows us to enhance more
effectively the costs of reliable scanlines.

4.2. Smart aggregation

Given a point p, the smart aggregation approach pro-
posed aims at replacing the cost aggregation performed by
SGM on each path computed by the SO algorithm with a
strategy that takes into account the reliability Cs(p) of each
path s € S estimated by the RF. Specifically, for each point
p, we aggregate the SO costs according to the following
weighted sum:

(10)

in (10) the average confidence value at the denomina-
tor allows us to further enhance the dynamic of the cost
curve whenever a path s is expected to be more reliable with
respect to the others. Although never occurred in our ex-
perimental evaluation, if all the C(p) are zero we replace
E*(p,d) with E(p,d) and hence assign the disparity ac-
cording to the conventional SGM approach.

In the next section we prove that the learned aggregation
strategy outlined so far enables to improve the effectiveness
of the SGM algorithm. Moreover, with a subset of appro-
priate paths s € S, we are able to obtain better results with
respect to the standard SGM approach. This strategy also
enables us to reduce the execution time and the memory
footprint of SGM making our proposal suited to higher res-
olution stereo pairs and computing architectures with con-
strained resources.

5. Experimental results

In this section, we provide an exhaustive evaluation of
our proposal on standard dataset KITTI 2012 detailing the
methodology adopted to train the RF in two different con-
figurations (i.e., single and multiple RF) and evaluating,
by means of Area Under the Curve (AUC) [16], the con-
fidence measure C;(p) provided by our framework. Then,

we report on the same dataset, the improvements yield by
our framework with respect to SG Mg. Moreover, to prove
that our framework is able to generalize to different scenar-
ios, we provide additional experimental results, in terms of
AUC and improvements with respect to SG Ms, regarding
the cross-validation on KITTI 2015 and Middlebury 2014
with the RF trained on KITTI 2012. Finally, we show that
our method outperforms state-of-the-art [2 1] and also report
an experimental evaluation combining the two approaches.

5.1. Framework configuration and training

In our experiments, we adopt as baseline the SG Mg [12]
algorithm computed on the 8 paths belonging to S depicted
in Figure 1. As matching cost function we use the Hamming
distance, aggregated on 5 x 5 patches, computed on images
obtained according to a binary census transform consider-
ing 5 x 5 neighborhood points. We set parameters P1 and
P2 of the SGM algorithm to 30 and 300, respectively. Ac-
cording to [2] we do not change these parameters being the
target datasets quite structured.

We tuned an ensemble classifier made of 10 regression
trees, maximum depth equals to 25 and minimum number
of samples in each node to split equal to 20. To gener-
ate the training data, we processed eight challenging stereo
pairs from KITTI 2012 commonly adopted on related works
[10, 21], which are 43, 71, 82, 87, 94, 120, 122, and 180%".
For each of these stereo pairs, eight independent SOs pro-
vide a disparity map for each path according to the WTA
strategy. We evaluate the performance of our proposal with
a single RF as well as with one RF for each path. It is
worth observing that, in this latter case, the amount of train-
ing sample on the same images is reduced by a factor 8.
Moreover, we trained two versions of our framework: one
with our features and the other with the features proposed
in [21] in order to provide a comparison with state-of-art.
The evaluation was carried out on the remaining images of
the KITTI 2012 dataset and also cross-validated (with the
same training) on KITTI 2012, KITTI 2015 and Middle-
bury 2014 datasets. For the latter case we used images at
quarter resolution.

5.2. Confidence evaluation

In this section we evaluate the confidence provided by
the proposed RF framework to compare its effectiveness
with respect to state-of-art approaches. For this purpose
we compute AUC, a common method [16, 27, 10, 21] to
evaluate the effectiveness of a confidence measure. Given
a confidence map, pixels are sorted according to their con-
fidence in descending order. A subset of them equal to 5%
of the total is sampled and the error rate is plotted, then the
subset is increased to 10% of the total and so on until 100%.
Ties are solved by taking into the subset all the points with
the same confidence value. Given the percentage of erro-



Dataset Optimal | PKRN LRD Park Proposed Park (M) Proposed (M)
KITTI 2012 0.038202 | 0.182604 0.155302 0.075122 0.072264 0.092018 0.071020
KITTI 2015 0.043930 | 0.193883 0.160993 0.098198 0.092410 0.111211 0.089296
Middlebury 2014 | 0.050107 | 0.181431 0.172787 0.093343 0.084257 0.112117 0.084539

Table 1. Evaluation of the confidence, in terms of average AUC, provided by our framework, in single and M configuration, using our
features and those proposed in [21], compared with optimal values and confidence measures from literature [16]. Top table, results for
KITTI 2012 . Central table, results for KITTI 2015. Bottom table, results for Middlebury 2014.

neous points ¢, according to [16], the optimal AUC can be
obtained as € + (1 — €)In(1 — €). AUC closer to the optimal
value reflects a better confidence prediction.

Table 1 reports tables containing average AUCs com-
puted on KITTI 2012 (first row), KITTI 2015 (second row)
and Middlebury 2014 (third row) datasets, evaluating it over
the results of each SO and averaging. The tables report opti-
mal values and AUCs related to PKRN [16], LRD [16], Park
et al. [21], our proposal, Park et al. trained on configuration
M and our proposal trained on configuration M.

The numbers show that our feature vector fop sig-
nificantly outperforms in most cases state-of-the-art [21].
Moreover, we can notice that configuration M yields even
more accurate results in terms of confidence prediction. On
average, on all the eight paths, the relative improvement in
terms of AUC with respect to [21] adopting our features
is 22% on KITTI 2012, 20.4% on KITTI 2015 and 24.6%
on Middlebury 2014 for configuration M and, respectively,
3%, 6.6% and 9.7% with a single RF. Regarding our pro-
posal, the relative improvement yielded by configuration M
with respect to training a single RF is 1.7% on KITTI 2012,
3.3% on KITTI 2015 and —0.3% on Middlebury 2014.

Summarizing, configuration M clearly performs better
when compared to [21] with an average relative improve-
ment of 22.3%. On the other hand, when comparing our
method in the two configurations proposed, on the Middle-
bury dataset we do not have a dominant strategy for all the
eight scanlines.

To further confirm the effectiveness of the proposed fea-
tures, regardless to its application to the smarter aggrega-
tion strategy described so far, we evaluated AUC values
for confidence measures yielded by our proposal and [21]
with two different algorithms: Block Matching (BM) and
the outcome of the full SG Mg method (i.e., not the single
SOs). Table 2 reports average results on KITTI 2015 and
Middlebury 2014, showing how our general-purpose con-
fidence measure clearly outperforms [21] even considering
the output of generic stereo algorithms outside the smarter
aggregation context previously proposed.

5.3. Disparity accuracy evaluation

In this section, we assess the performance of our pro-
posal, referred to as RF' — SGMsg, by gathering the ab-
solute improvement in terms of error rate, with respect to
the baseline SG Mg algorithm, with our features and with

Algo | Optimal Parketal. [21] Proposed | Win rate

BM 0.137 0.179 0.163 2007200
SGMs | 0.038 0.124 0.095 197/200

BM 0.093 0.114 0.106 13/15
SGMs | 0.042 0.093 0.063 15/15

Table 2. Confidence measures evaluation, in terms of average
AUC, provided by our method and [21] on two popular stereo
algorithms: Block Matching (BM) and the standard SG Mg al-
gorithm [12]. On top ad bottom, respectively, results on KITTI
2015 and Middlebury 2014 dataset. Our confidence measure con-
stantly outperforms state-of-the art method [21] with both algo-
rithms, confirming that its effectiveness is not restricted to SO.

the features proposed in [21]. Moreover, we include in this
evaluation the results gathered by our own implementation
of the DSI modulation proposed in [21].

Figures 3 and 4-left report the absolute disparity accu-
racy improvement on KITTI 2012, KITTI 2015 and Mid-
dlebury 2014 obtained by RF' — SG Mg, with our features
in both configurations, with respect to baseline SGMg. On
KITTI datasets configuration M outperforms the single RF.
In particular, on average, SG Mg achieves a 9.90% error rate
on KITTI 2012 and 9.56% on KITTI 2015. RF — SGMg
in single RF configuration achieves, respectively, 9.38%
and 9.14% (—0.52% and —0.42%) while configuration M
achieves 9.26% and 9.04% (—0.64% and —0.52%). Con-
versely, on average, on the Middlebury dataset the single
RF performs slightly better than configuration M. In fact,
SG Mg has an error rate of 22.93%, single RF 21.50%
(—1.43%) and configuration M 21.60% (—1.33). These ac-
curacy improvements follow the behavior of the confidence
measure C analyzed in the previous section.

Figures 5 and 4-right report the absolute accuracy im-
provement yielded by our framework, in configuration M,
for KITTI datasets (Figure 5) and single RF for Middle-
bury dataset (Figure 4-right), using our framework with the
proposed features and with those of Park et al. On the
three datasets, our feature vector is always more effective
than state-of-the-art when deployed with the smart aggre-
gation strategy proposed. In particular, on average, with
the feature vector [21] we obtain 9.40% (-+0.14) on KITTI
2012, 9.14% (+0.10) on KITTI 2015 and 22.47% (+0.97)
on Middlebury.

It is worth to point out that, extending the training set
by a factor 8 slightly improves the performance of config-
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Figure 3. Absolute improvement of disparity accuracy yielded by our approach with respect to SG Mg on KITTI 2012 (top) and KITTI
2015 (bottom). The improvements introduced by a single RF (blue) and by configuration M (red).
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Figure 4. (Left) Absolute improvement of disparity accuracy yielded by our approach with respect to SG Mg on Middlebury 2014: single
RF (blue) and configuration M (red). (Right) Absolute improvement of disparity accuracy with respect to SG Mg adopting our features
(red) and features [2 1] (blue) on Middlebury 2014 with configuration M.

uration M on the Middlebury dataset but does not allow
in the tested cases to outperform the single RF. Neverthe-
less, regarding the comparison of feature vector, on the three
datasets our proposal outperforms [21] in any configuration
and amount of training samples.

We also compared our proposal with the DSI modula-
tion proposed in [21], referred to as PARKs, applied to
our baseline SG Mg algorithm. According to this evalua-
tion we obtained, on average, with RF'—SG Mg an absolute
improvement with respect to PARKjg of 1.04% on KITTI
2012 and of 0.69% on KITTI 2015. Finally, we evaluated
the combination of PARKg and the proposed RF'—SG Mg
obtaining an absolute improvement with respect to SG Mg
of 1.04 on KITTI 2012 and of 1.14 on KITTI 2015.

For each path, on KITTI datasets: without specific opti-
mizations, our C++ implementation of SO requires 4s, com-
puting feature vector 0.08s and confidence measure com-

putation 0.53s. The final smart aggregation phase intro-
duces a negligible overhead. Therefore, our method sub-
stantially adds an overhead of 15% to the overall execu-
tion time. Computing our feature vector is O(1) and the
memory footprint of the RF framework is independent of
image resolution and, only for configuration M, propor-
tional to the number of paths. The high memory footprint
is a major issue of the SGM algorithm, particularly rele-
vant with computing architectures with constrained mem-
ory resources. However, this fact may be critical with any
device when dealing with high resolution stereo pairs. For
instance, the full resolution Middlebury dataset has images
of size W x H = 3000 x 2000 with a disparity range
dmaz = 800. In this very case, the footprint of the only
DSI would be  to 9 GB, using 16 bit short for aggregated
costs. This amount of memory might be prohibitive with
any current computing device including standard PCs. On
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Figure 5. Absolute improvement of disparity accuracy with respect to SG My adopting our features (red) and features [21] (blue) on KITTI
2012 (top) and KITTI 2015 (bottom). In both cases, results are concerned with configuration M.

the other hand, it is worth observing that using a subset of
S made of paths 0°,45°,90° and 135° the SGM algorithm,
referred to as SG My, would have a memory footprint re-
duced by a factor (H + 3)/3. For the full resolution Mid-
dlebury dataset this factor is about 667 (memory footprint
of SGM, about 13.8 MB), for KITTI datasets is about 124
(memory footprint of SGM, about 1.9 MB). Even com-
pared to the memory-efficient eSGM [13] (providing results
almost equivalent to the vanilla SG Mg adding, however, a
further image scan), our approach enables a notable reduc-
tion of the memory footprint improving at the same time the
overall accuracy. The memory of RF — SG M, is reduced,
with respect to eSGM, by a factor almost 10 on the KITTI
dataset and by a factor almost 16 on the full-resolution Mid-
dlebury 2014 dataset. Moreover, with the huge resolution
stereo pairs reported in the eSGM paper [13], the memory
footprint of RF' — SGM, is 0.03 GB, 4.8 GB for eSGM
and 272 GB for SGMsg .

Although the SGM, does not provide the same accu-
racy of SGMjg (and eSGM), it has been widely adopted,
at the expense of reduced performance with respect to
SG Mg, when the memory footprint represents the major
constraint [1, 8]. Nevertheless, on the same four paths pre-
viously highlighted, the proposed method, referred to as
RF —SGM,, clearly outperforms SG Mj as reported in Ta-
ble 3 on KITTI 2012, KITTI 2015 and Middlebury. This in-
teresting fact can be exploited to reduce the execution time
of SGMjg and, more importantly, to drastically reduce the
memory footprint without compromising its overall effec-
tiveness in order to fit with a broader class of devices and
image resolutions. Observing the table we can notice that,
on average, on the three datasets RF'— SG M, improves the

Dataset K12 K15 M14 avg.

SGDMsg 9.90%  9.59%  22.92% | 14.13%
RF — SGMg | 926%  9.04%  21.49% | 13.26%
SGM, 10.65% 11.19% 23.50% | 15.11%
RF —SGMy | 941%  9.60%  22.07% | 13.69%

Table 3. Average error achieved by the SGM algorithm on 8
SGMsg and 4 SG M, paths and by our RE-SGM approach on 8
RF — SGMsg and 4 RF — SG M4 paths.

disparity accuracy with respect to SG Mg of 0.44% deploy-
ing only 4 paths and hence enabling a drastically reduced
memory footprint.

6. Conclusions

In this paper, leveraging on machine learning, we have:
i) proposed a novel general-purpose confidence measure for
stereo matching based on O(1) features uniquely computed
in the disparity domain ii) focusing our attention on the
popular and effective SGM algorithm, we have exploited
our confidence measure to propose a smarter aggregation
framework aimed at increasing the effectiveness of SGM
with a negligible overhead c) the overall framework allows
us to achieve, with respect to SGM, comparable or better ac-
curacy with a notably lower memory footprint thus dealing
with one of the major issues of this algorithm. Exhaustive
experimental results on KITTI 2012, KITTI 2015 and Mid-
dlebury 2014 confirmed the effectiveness of our proposals.
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