Deep Stereo Fusion: combining multiple disparity hypotheses with deep-learning
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Abstract

Stereo matching is a popular technique to infer depth
from two or more images and wealth of methods have been
proposed to deal with this problem. Despite these efforts,
finding accurate stereo correspondences is still an open
problem. The strengths and weaknesses of existing methods
are often complementary and in this paper, motivated by re-
cent trends in this field, we exploit this fact by proposing
Deep Stereo Fusion, a Convolutional Neural Network ca-
pable of combining the output of multiple stereo algorithms
in order to obtain more accurate result with respect to each
input disparity map. Deep Stereo Fusion process a 3D fea-
tures vector, encoding both spatial and cross-algorithm in-
formation, in order to select the best disparity hypothesis
among those proposed by the single stereo matchers. To the
best of our knowledge, our proposal is the first i) to leverage
on deep learning and ii) able to predict the optimal dispar-
ity assignments by taking only as input cue the disparity
maps. This second feature makes our method suitable for
deployment even when other cues (e.g., confidence) are not
available such as when dealing with disparity maps pro-
vided by off-the-shelf 3D sensors. We thoroughly evaluate
our proposal on the KITTI stereo benchmark with respect
state-of-the-art in this field.

1. Introduction

Stereo matching aims at inferring depth by determining
corresponding points in images taken by two or more cam-
eras sensing the same scene. To this end several approaches
have been proposed and a quite outdated, yet exhaustive, re-
viewed and evaluation on a small and unrealistic dataset was
proposed in [29] . Despite the research efforts in this field,
with the introduction of more challenging datasets such as
KITTI [6, 7, 24] and Middlebury 2014 [30] it is clear that
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even the most accurate approaches such as [41] are still far
from correctly solving the correspondence problem.

Most stereo algorithms rely on a set of parameters or
heuristics which perform very well in particular circum-
stances but yield poor results in others. A typical example is
the size of the aggregation window used by local methods,
which should be large when dealing with smooth frontal-
parallel surfaces and smaller near depth discontinuities or
slanted surfaces. Other methods, such as Semi Global
Matching (SGM) [12] perform pretty well in smooth and
slanted areas but may lead to artifacts near depth disconti-
nuities. These observations lead some researchers [33, 25]
to argue that the overall disparity accuracy can be improved
exploiting redundancy in the input data by means of deci-
sion trees.

In this paper we follow the same intuition but following
a completely different strategy. We propose Deep Stereo
Fusion (DSF), a novel end-to-end methodology to predict
a more reliable disparity map taking as input the output
of multiple Stereo Matchers (SMs). Differently from [33],
based on explicit features extraction from input data (e.g.,
confidence, matching costs, etc), DSF relies on deep learn-
ing, deploying a Convolutional Neural Network (CNN),
aimed at processing only the disparity maps provided by
multiple SMs. This is carried out by tackling fusion as a
multi-labeling classification problem, which enables to de-
sign a single classifier capable to predict, according to the
the input sample, the reliability of each matcher. The out-
come is a choice map, shown in Figure 1, encoding for each
pixel which SM is selected at each location.

This strategy enables an elegant end-to-end training and
testing procedure, conversely to other approaches which
leverage on multiple classifiers (e.g., one per SM), requir-
ing stand-alone training procedures. Moreover, it leads to a
significantly faster response time. We evaluate DSF on the
KITTI 2012 dataset [6, 7], comparing our results with state-
of-the-art approach represented by Spyropoulos and Mor-



(a)
Figure 1. Overview of Deep Stereo Fusion. (a) reference image from a KITTI 2012 [6, 7] stereo pair (000117), (b) choice map, each color
encodes a different SM: for each point is depicted the one selected by the framework [best viewed with colors].

dohai [33].

2. Related Work

According to [29], stereo algorithms can be broadly clas-
sified in local and global according to the steps performed
during their execution, which are matching cost computa-
tion, cost aggregation, disparity computation/optimization
and disparity refinement. Local methods [36, 13, 14, 5],
usually perform the first two steps while global methods
[34] mostly focus on the first and the third. Local ap-
proaches usually are faster, but are more prone to errors es-
pecially on challenging datasets such as the KITTI [6, 7, 24]
and Middlebury 2014 [30]. On the other hand, by minimiz-
ing and energy term on the whole image exploiting appro-
priate approximated strategies [34], global approaches pro-
vide in general more accurate results. A good compromise
between the two categories is the popular SGM algorithm
[12] that, solving multiple disparity optimization problems
independently, provides a good trade-off between accuracy
and speed.

Machine learning techniques, initially adopted by the
computer vision community for high level tasks such as
scene understanding, have been more recently deployed
also for tackling low-level vision problems such as stereo
or confidence estimation. Some early works focused on the
estimation of parameters to better tune an algorithm such in
the case of MRF based methods [38, 42] while other for fea-
ture selection in stereo [21]. A first attempt to detect correct
and wrong matches leveraging on machine learning were
proposed in [4, 28]. Others proposed the joint use of mul-
tiple confidence measures [15], by means of random forest
classifiers, to obtain a more effective index of correctness
for disparity assignment. In [26, 10, 32, 27] similar strate-
gies were focused at improving the accuracy of disparity
maps exploiting learned confidence measures. In particular,
Spyropoulos et al. [32] detected a set of very confident pix-
els, referred to as ground control points, and inferred the
disparity on the whole image leveraging on these seeds,
Park and Yoon [26] modulated the initial matching cost
curves before running aggregation/optimization steps ac-
cording to an estimated confidence, In [27] we identify the
reliability of each scanline of the SGM algorithm weighting

(b)

in the overall sum their contribution accordingly.

The idea of exploiting redundancy by combining differ-
ent algorithms has been already applied to different fields.
Zhu et al. [43] fit regression models to local image areas,
starting from the assumption that a single one is not suited
for all pixels. Some approaches modeled it by a multi-label
classification problem as well, like [17] which assigns to
each match the probability to belong to three categories and
[20] addressing both semantic segmentation and 3D recon-
struction. Even more related to the task we are tackling,
some works on stereo [18, 25, 33] and optical flow [22] de-
ploy frameworks able to choose the best assignment starting
from several hypothesis provided by different algorithms.
Some of these, for instance [22], do not take into account
any kind of mutual information between the input cues. On
the other hand, others [33] exploit this fact enabling their
classifier to improve the error rate.

Deep learning techniques recently started to spread on
low level vision tasks too. In [39], Zagoruyko and Ko-
modakis reported a complete study on how to learn directly
from image data a general similarity function by exploit-
ing CNN architectures. Specifically, they used 2-channels,
siamese and pseudo-siamese models, reporting results re-
lated to stereo matching as a particular case of image match-
ing. Zbontar and LeCunn, proposed [40, 41] an effec-
tive methodology for matching cost computation relying
on a CNN, able to rank at the top of KITTI [6, 7, 24]
and Middlebury [30] when post-processed by a state-of-
the-art stereo pipeline based on SGM and a local cost ag-
gregation approach. Mayer et al. [23] designed a end-to-
end fully-convolutional network, processing full-resolution
stereo pairs and inferring depth without any operation typ-
ically performed by stereo algorithms. Deep architectures
usually require huge amount of data for training: popular
stereo datasets [0, 24, 30] provides enough samples when
designing networks with a relatively small perceptive field
(i.e., dimension of the images processed during the training
phase), but they provide an almost insignificant number of
training samples for architectures with fully-resolution per-
ceptive fields such as i.e. [23]. Some authors dealt with this
issue by proposing a data-augmentation process [3] lever-
aging on multiple view points and contradictions between
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Figure 2. Disparity maps obtained from a set of different SMs on the KITTI stereo pair 000117, shown in Figure 1. We can notice as the
same local area presents artifacts on the output of some matchers (black circles), while it appears to be correct on others (white circle). (a)
DAISY, (b) ELAS, (c) FCVF, (d) MRF, (e) SH-SOB21, (f) SH-SSDS5, (g) SH-ZNCC21, (h) SUPER-rSGMS5. Detailed description of the
matchers in Section 3.2.

multiple depth maps, or producing synthetic datasets [23]
large enough to run an end-to-end training of a deep archi-
tecture. Finally, CNNs have been deployed in multi-label
classification tasks and Xi’an et al. [9] deployed a CNN for
cross-domain action unit detection, Wei et al. [37] propose
a methodology to train a network on single-label samples
by choosing a proper loss function and fine-tune on multi-
label examples, Kurata et al. [19] propose to treat some of
the neurons in the final hidden layer as dedicated neurons
for each pattern of label co-occurrence.

3. Deep Stereo Fusion

In this section we introduce the DSF framework that,
given a set M of SMs, aims at combining multiple input
disparity maps Dy, k € M to obtain a more accurate map
Dp. By deeply analyzing this problem we decided to model
it as a multi-label classification problem driven by two main
assumption:

(h)

e Each SM compute disparity assignments according to

different cues. Usually, different behaviors can be
observed locally on disparity maps by changing the
stereo algorithm (e.g., near depth discontinuities, on
low-textured areas, etc), as depicted in Figure 2. A
framework aimed at merging different SMs should be
able to distinguish, in any circumstance, the best as-
signment according to local properties of the input dis-
parity maps. The different disparity maps can be seen
as different features provided to the merging classifier.

Choosing among a pool of SMs can be casted within a
classification problem: given a sample made of m =
| M| features, the framework choose the category (i.e.,
most accurate SM) it belongs to. Moreover, for a given
pixel one or more matchers could possibly vote for the
same, correct disparity assignment, leading to a multi-
label classification problem.
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Figure 3. Architecture of the DSFE. Input MSI, containing disparity maps from the eight matchers, is forwarded to four convolutional layer
and, then, to two fully-connected layers, each of them followed by ReLU activators. The output vector encodes a score for each matcher.

For a given input, the highest score locates the best SM.

According to these assumption and to the recent achieve-
ments in this field [23, 3, 40, 41], we train, on a large dataset
with ground-truth, a deep architecture aimed at dealing with
the outlined problem. For each pixel, we extract m square
patches centered on the Dy, k € M, disparity maps. These
data are collected inside a 3D tensor, a Matcher Space Im-
age (MSI). The DSF is trained on a large set of MSIs in or-
der to distinguish the best matcher on the different samples
and, thus, it provides a set of m scores. The chosen matcher
will be the one with the highest score. The features repre-
sentation encoded by MSI allows us for a joint processing
of data provided by the different matchers, similarly to what
Spyropoulos et al. achieved by an explicit computation of
features encoding agreement among the SMs, but deployed
within a single classifier instead of using a single classifier
per matcher [33].

We introduce the architecture of our network in section
3.1, then we report details about our experimental evalua-
tion, by defining the same set M of 8 matchers in Section
3.2 in order to compare our proposal with [33].

Section 3.3 provides details about the training phase and
finally, in Section 4, we thoroughly compare our proposal
[33] on the KITTI 2012 [6, 7] dataset.

3.1. Proposed architecture

Figure 3 shows the architecture of DSF, organized as a
m-channels network. The input to the network is a MSI
of dimension N X N x m, with N the side of squared
patch extracted from the input disparity maps provided by
the m methods. According to state-of-the-art methodology
deployed for stereo, for our experiments we tuned N equal
to 9. This means that SDF has a perceptive field of 9 x 9,
from which it will determine, for the central pixel, the opti-
mal disparity assignment. This quite small perceptive field
allows us for generating a large amount of training samples

from the available datasets for stereo [0, 7, 24, 30] with-
out requiring synthetic data. the DSF then extracts a large
number of features, by deploying four convolutional layers.
Each layer is made of F' convolutional kernels of size 3 x 3,
each one followed by a Rectifier Linear Unit (ReLU).

0, ifex<O

x, otherwise

ReLU(x) = { (1)

Being no padding or stride applied, these four layers lead
to a 1D output tensor, more precisely of size F'. This feature
vector is then forwarded to two fully-connected layers fol-
lowed by ReLU. Finally, a classification layer is in charge
of predicting which of the considered matchers propose the
best disparity assignment, by a layer made of m neurons
providing a 1D prediction vector C' containing m values.
The optimal disparity assignment for the central pixel in-
side the perceptive field is assigned as

-DF(x7y) :Dw(xay) (2)

with w index of (one of) the matcher(s) achieving the
highest score from the prediction layer.

Recent advances in deep learning introduced the concept
of fully-convolutional neural network, an architecture on
which traditional fully-connected layers are absent and the
whole classifier consists only on convolution and sampling
operation. Any model deploying fully-connected layer is
equivalent to a a fully-convolutional network by replacing
each fully-connected layer with a convolutional one made
of 1 x 1 kernels, as many as the number of neurons of the
replaced layer, with the same weights and biases. The main
benefit of this approach is to model a size-independent clas-
sifier, able to process data (images) of any size without crop-
ping or resizing the input. This allows our framework, as
well as other works [40, 41, 2], to greatly speed-up run time



execution, enabling for a single forward of a full resolution
MSI instead of w x h forwards of 9 x 9 cropped data. The
absence of pooling operation inside DSF leads to an output
of size (w — 8) x (h — 8) x m, by applying a 0-padding of
size 4 around the whole input dimension w and h enables to
obtain a 3D prediction tensor of size w X h X m, reducing
the run time required by the DSF framework from several
minutes to few seconds.

3.2. Combined Stereo Matchers

As SMs for the experimental evaluation we chose the
same pool M of m = 8 of stereo algorithms deployed in
[33] in order to be able to directly compare with it.

e DAISY: an approach based on a local descriptor aimed
at wide baseline stereo matching [35]

e ELAS: Efficient LArge-Scale [8] stereo matching de-
tects an initial set of reliable disparity assignments and
fills remaining one with an appropriate triangulation

e FCVF: local method based on edge-preserving filter-
ing of cost volume [ 14, 5] by means of the guided filter

(1]

e MREF: global method expressed within a Markov Ran-
dom Field framework [16]. Matching cost is Normal-
ized Cross Correlation on 5 x 5 windows and smooth-
ness penalty is modulated according to intensity differ-
ence between neighboring pixels

e SH-SOB21: Shiftable Window local aggregation on
21 x 21 patches. Matching cost is sum of absolute
differences (SAD) of responses to vertical edge (e.g.,
Sobel filter on x direction)

e SH-SSDS5: Shiftable Window aggregation on 5 X 5
boxes. Initial costs processed as sum of squared dif-
ferences (SSD) of color intensities

e SH-ZNCC21: Shiftable Window aggregation on 21 X
21 boxes. Initial costs processed as Zero-Mean Cross-
Correlation (ZNCC) on 21 x 21 patches

e SUPER-rSGM5: SGM [12] variant proposed by
Spangerberg et al. [31] as. Input images are census
transformed on 5 x 5 patches. The output of the al-
gorithm is further enhanced exploiting superpixels as
described in [33], segmenting left image into SLIC su-
perpixels [ 1] and fitting a plane for each segment with
RANSAC.

3.3. Training procedure

In our experiments, we trained the DSF framework on
the first 50 frames of the the KITTI 2012 dataset [0, 7] on

cropped samples centered on pixels with available ground-
truth values (approximatively % of the overall pixels). This
strategy provides more than 6.5 million MSIs of dimension
9 x 9 x 8 for the training set. For each sample, a label vec-
tor of dimension 8 is assigned, encoding the correctness of
a disparity assignment for each of the 8 SMs belonging to
set M. If a given matcher provides a disparity assignment
which differs from the ground-truth value for more than 3, it
is labeled as wrong assignment, encoded as *0’ in the label
vector, ’1” otherwise. Differently from the strategy adopted
in [37], we directly trained our model on multi-label sam-
ples, in order to the reduce the amount of single-label sam-
ples (i.e., pixels having only a single matcher proposing the
correct assignment) due to the high overlapping between
the correct matches predicted by the different SMs. Oth-
erwise, the amount of training data would be drastically re-
duced. We tuned DSF hyper-parameters, achieving the best
results with F' = 64 kernels for each convolutional layer
and 384 neurons for the fully-connected layers (thus, 384
kernels 1 x 1 in the fully-convolutional model). During
the training phase, we followed the Stochastic Gradient De-
scent (SGD). We optimized the Binary Cross Entropy loss
function (BCE), extended to the multi-label classification
problem as in [9, 37, 19], between output o of the network
and label ¢ on each sample ¢ of the mini-batch B (3)

BCE(o,t)

~yy ( ] log (ol 1)

+ (1 — t[i][k]) log (1 — o[i] [’f]))
3)

by adding a sigmoid function S(x) (4) as final layer of
the network

S(x) = “)

We carried out 60 training epochs, with an initial learn-
ing rate of 0.003, decreased by a factor 10 after the 10"
epoch and after the 30*", leading to a final learning rate of
3 x 107° for the final 30 epochs and a momentum of 0.9,
inspired by [41] and confirmed by our experiments. The
size of each mini-batch B was 128. The whole training pro-
cedure, carried out on a i7 4720HQ CPU, took approxima-
tively 4 days. To speed-up the training procedure, DSF was
first designed with fully-connected layers, which appears
to be faster with respect to 1 x 1 convolutional layers dur-
ing this phase. Once the network was trained, we replaced
fully-connected layers with fully-convolutional ones.
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Figure 4. Absolute improvement of the error rate with respect to the most accurate matcher in M, SUPER-rSGMS, yielded by DSF on
non-occluded (blue) and all pixels (yellow) of the test set (i.e., KITTI 2012 frames from 000050 to 000193). The network is able to improve
the error rate on all the considered frames except 000132 when considering non-occluded pixels and 000099 on both cases. DSF achieve
an absolute improvement on the test set of 1.51% on non-occluded pixels (red line) and 1.75% on all pixels (purple line).

Algorithm Out-Noc  Out-All
DAISY 10.88%  12.86%
ELAS 19.90%  21.68%
FCVF 21.59%  22.46%
MRF 10.60%  12.58%
SH-SOB21 43.64%  44.86%
SH-SSD5 55.08%  56.04%
SH-ZNCC21 30.71%  29.20%
SUPER-rSGMS5 | 7.85% 9.90%
DSF 6.34% 8.14%

Table 1. Error rate achieved by the 8 SMs and DSF on our test set
(i.e., KITTI 2012 frames from 000050 to 000193) on both non-
occluded (Out-Noc) and all pixels (Out-All) with ground-truth
available.

4. Experimental results

We evaluated the proposed DSF framework' on the re-
maining 143 frames of the KITTI 2012 dataset not used
during the training phase by computing: the error rate of the
merged disparity map over all pixel with available ground-
truth (i.e., disp_occ data provided by KITTI 2012) and
non-occluded areas (i.e., disp_noc data provided by KITTI
2012), reported, respectively, as Out-All and Out-Noc rates.
Then, we compared our results with the proposal of Spy-
ropoulos et al. [33] on the same latest 97 frames of KITTI
2012 dataset (in [33] the training set was made of the first
97 frames out of 194).

Figure 4 plots the difference in terms of error rate for
Out-Noc and Out-All between the most accurate SM in the
M set, which is SUPER-rSGMS, and the output provided
by DSF on the KITTI 2012 dataset, excluding the first 50
stereo pairs involved in training procedure. Positive values
stands for a reduction of the error rate carried out by our
proposal. Except two cases, which are stereo pair 000099
for both Out-Noc and Out-All, 000132 for Out-Noc, DSF

ISource code available on the authors’ website

Algorithm % of total pixels
DAISY 1.04%
ELAS 21.58%
FCVF 6.76%
MRF 331%
SH-SOB21 7.73%
SH-SSD5 3.84%
SH-ZNCC21 17.88%
SUPER-rSGMS5 37.85%
Total 100.00%

Table 2. Average occurrence rate of each matcher selected as win-
ner by DSF on KITTI 2012 frames from 000050 to 000193.

is able to effectively merge the 8 matchers and outperforms
SUPER-rSGMS, with an absolute average error rate reduc-
tion of 1.51% Out-Noc and 1.75% Out-All. The error rate
over the whole test set for SUPER-rSGMS is 7.85% Out-
Noc and 9.90% Out-All, while DSF achieve respectively
6.34% and 8.14%, with a relative improvement of 19.23%
and 17.7% respectively. Table | shows average error rates
for all the 8 SMs, as well for DSF.

Figure 5 plots the occurrence rate of the matcher selected
as winner by DSF. Each bar of the histogram represents a
single stereo pairs from our test set, the different colors en-
code the 8 combined matchers according to the legend re-
ported in the figure. We can notice how the most accurate
algorithm, SUPER-rSGMS, is chosen most of the times, as
we could expect, while two of the most accurate methods af-
ter SUPER-rSGMS are not frequently selected. This fact is
not necessarily inconsistent with the nature of the problem:
a large subset of pixels which are correctly assigned by mul-
tiple SMs decreases the possibility of a matcher to be domi-
nant with respect to the others. This is a direct consequence
of the multi-label classification task we modeled to deal
with the problem. However, the reported error rates sup-
port the multi-labeling assumption adopted. Table 2 sum-
marizes these results, reporting the occurrence rate over our
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Figure 5. Occurrence rate of the matcher selected as winner by DSF on each image of our test set (i.e., KITTI 2012 frames from 000050 to
000193). SUPER-rSGMS5 (purple) is the most selected algorithm, followed by ELAS (red) and SH-ZNCC21 (cyan). SH-SOB21 (white)
and FCVF (green) gives a minor contribution to disparity selection, followed by SH-SSD5 (yellow) and MRF (blue). Finally, DAISY

(black) is seldom selected as winner.

entire test set, confirming the trend previously highlighted
with the histogram.

Then, we computed the error rate on the last 97 stereo
pairs from KITTI (i.e., from 000097 to 000193) in order
to compare our proposal with the N8 framework proposed
in [33]. We do not apply calibration nor post-processing
reported in their paper to compare the raw predictive ca-
pability of the two classifiers. Table 3 reports the result
of this comparison. While the N8 ensemble classifiers[33]
performs better when processing non-occluded pixels only,
DSF slightly outperforms it when considering all pixels.
Therefore, the two methods can be considered almost equiv-
alent, but DSF performs better when dealing with occluded
areas. In fact, Table 4 reports the error rate, on the same
testing set, restricted to occluded areas only. N8 achieves
a 96.28% error rate, while DSF 87.46%, outperforming
it with an absolute error reduction of 8.82%. Our pro-
posal does not rely on explicit features extraction, while
N8 requires a set of hand.crafted indexes encoding match-
ers agreement and the Left-Right Consistency check (LRC)
which might be available with the disparity maps. This lat-
ter fact makes our method suited for fusing disparity maps
provided by any kind of stereo sensor, including out-of-
the-box device. The LRC features available may also be
responsible of the lower accuracy achieved by N8 on oc-
cluded area, being it a strong information driven by depth
discontinuities. According to [33], given the full dispar-
ity maps obtained by the 8 SMs, the time required to test
the whole testing set (97 stereo pairs) is more than 3 hours
as verified on the same CPU, leading to an average 100+
seconds per stereo pair. This means that each of the 8 clas-
sifiers takes about 12-13 seconds. On the other hand, the
fully-convolutional nature of DSF, on the same CPU, makes
out method much faster requiring about 10 seconds for each
stereo pair (0.65 s on a Titan X GPU). Finally, Figure 6 de-
picts intermediate and final results provided by DSF, which
are the single score maps related to each algorithm (b-i) and

Algorithm | SUPER-rfSGMS N8 [33] DSF
Out-Noc 8.06% 6.21% 6.37%
Out-All 10.17% 821% 8.18%

Table 3. Error rate achieved on the last 97 stereo pairs from KITTI
2012 dataset (to compare with the evaluation reported in [33] on
all pixels with provided ground-truth. DSF outperforms the most
accurate matcher and shows to be almost equivalent to N8 [33]
deploying a single classifier instead of 8 [33]. The execution time
of DSF with respect to N8 is reduced by a factor 10.

Algorithm | N8 [33] DSF

Occlusions | 96.28% 87.46%
Table 4. Error rate achieved on the last 97 stereo pairs from KITTI
2012 dataset, considering only occluded pixels. DSF performs
better than N8 [33].

the final choice map (j).

5. Conclusions

In this paper, we introduced Dense Stereo Fusion, a
novel framework aimed at combining the output of sev-
eral stereo algorithms. Our proposal allows for an elegant
end-to-end training and testing of a single classifier, con-
versely to other approaches deploying multiple classifiers
[33]. Moreover, it enables a much lower running time with
respect to the same method. Experimental results confirm
that DSF is able to outperform all the combined matchers
and is almost equivalent, in terms of accuracy, to state-of-
the-art framework proposed by Spyropoulos et al. [33].
Nevertheless, our network clearly outperforms it on oc-
cluded pixels, proving to be more robust in such critical
areas.
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Figure 6. DSF pipeline highlighting intermediate results. (a) reference image for KITTI stereo pair 000123, (b-i) scores assigned by DSF
to the different matchers (in order: DAISY, ELAS, FCVF, MRF, SH-SOB21, SH-SSD5, SH-ZNCC21, SUPER-rSGM)), (j) choice map.
On this particular stereo pair, the processed choice map enables for an absolute reduction of the error rate of 7.41% Out-All and 7.27%
Out-Noc with respect to the most accurate matcher, SUPER-rSGM5.
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